
Road Segment Interpolation
for Incomplete Road Data

Yuya Sasaki
Graduate School of Information

Science and Technology
Osaka University

Osaka, Japan
sasaki@ist.osaka-u.ac.jp

Jiahao Yu
Graduate School of Information Science

Nagoya University
Nagoya, Japan

yu2014.db.is@gmail.com

Yoshiharu Ishikawa
Graduate School of Informatics

Nagoya University
Nagoya, Japan

ishikawa@i.nagoya-u.ac.jp

Abstract—Road data is fundamental information for location-
based services. We trust that the road data is complete to repre-
sent an actual road network when we develop the location-based
services. However, road data may be incomplete due to update
delays, and thus location-based services may not provide useful
results. Several algorithms have been proposed to automatically
update road data. In this paper, we study interpolation of missing
road segments by using vehicle trajectory data. We can find
missing road segments from the trajectories because vehicles may
pass through road segments that are not included in road data.
However, trajectories are inherently noisy due to GPS errors.
Hence, we cannot easily interpolate appropriate road segments.
We propose an algorithm based on map matching and clustering
techniques for achieving accurate and comprehensive interpola-
tion. Our algorithm first detects trajectories that are probably
on missing road segments. It then clusters the trajectories by
DBSCAN and integrates the trajectories for interpolating the
road data. Through the experiments using real incomplete road
data and trajectory data, we verify that our algorithm effectively
interpolates the missing road segments.

Index Terms—Road networks, Map matching, DBSCAN

I. INTRODUCTION

Recent devices such as smart phones and car navigation sys-
tems are commonly equipped with GPS systems. We can easily
acquire our current locations. This development has triggered
the advance of location-based services such as route search and
location recommendation [14]. Location-based services often
use road data to search for routes and/or calculate the distances
between our current locations and the destinations. The road
data is essential for wide location-based services.

For developing location-based services, we trust that the
road data is complete to represent the actual road network.
However, road data may be incomplete due to update de-
lays. For example, road data provided by OpenStreetMap1

is manually updated by voluntary users, and thus it may
have update delays and omissions. Another example is road
data in developing countries which are rarely updated due
to human resource shortage. Figure 1 shows road data in
Beijing extracted from OpenStreetMap and trajectories of taxis
provided by the T-drive project [15]. Black points and lines
denote the road data, and red points denote GPS points of the

1https://www.openstreetmap.org

Fig. 1: Example of incomplete road network and trajectory
data.

trajectories. A trajectory is through the area where there is no
road segments in the road data. Road segments probably exist
close to the trajectory in the actual road network.

Incomplete road data becomes a problem for both users
and businesses. If we use incomplete road data, location-based
services may output unexpected and incorrect results which
cause loss of the quality of service. Thus, many works attempt
to solve the problem by automatically updating the road data
based on vehicle trajectories [3], [8]. We have three incomplete
patterns; unnecessary, inaccurate, and missing.

• Unnecessary: road data has unnecessary road segments
and/or intersections that are not existing in the actual road
network.

• Inaccurate: locations of road segments and/or intersec-
tions are inaccurate.

• Missing: road data misses some road segments and/or
intersections.

Approaches for updating such incomplete patterns are differ-
ent from each other. Unnecessary road segments are easily
deleted from the road data when vehicles are not through the
road segments for a long time. Inaccurate road segments is
updated when trajectories and road segments are statistically
different. Updating inaccurate road segments is the main line
of incomplete road data, and thus several algorithms have been
proposed such as fixing centerlines [13]. To the best of our
knowledge, there are no literature for interpolating missing
road segments to the road data. In addition, approaches for
updating other patterns do not update missing road segments.

Therefore, in this paper, we propose an algorithm to interpo-
late missing road segments on incomplete road data by using

978-1-5386-7789-6/19/$31.00 ©2019 IEEE

vehicles trajectories. Since vehicles pass through missing road
segments like Figure 1, we can find missing road segments
from the trajectories. However, trajectories are inherently noisy
due to GPS errors, and thus it is not appropriate to use
trajectories themselves as missing road segments. This causes
three challenges to appropriately interpolate road segments.
First, it is difficult to accurately detect trajectories that may
be on missing road segments. We need to detect trajectories
that pass on missing road segments with high probabilities.
Second, if we interpolate trajectories as road segments, the
road segments probably take unrealistic shapes. Hence, we
need to modify shapes of trajectories to be realistic. Third, if
many trajectories are detected and they are close to each other,
we may unnecessarily interpolate many road segments while
they pass the same road segments. For avoiding unnecessary
interpolation, we need to integrate the trajectories.

For tackling these challenges, our algorithm consists of four
steps: (1) extracting trajectories as candidates of missing road
segments by a map matching algorithm [10], (2) simplifying
the candidates of trajectories to take realistic shapes, (3)
clustering the candidates by DBSCAN [7], and (4) integrating
the candidates close to each other and interpolating them to the
road data. Through the experiments with real incomplete road
data OpenStreetMap and trajectory data T-drive data, we verify
that our algorithm effectively interpolates road segments. Our
algorithm interpolates several shapes of road segments from
straight to complex shapes.

The main contributions of this paper are as follows.
• This is the first work for interpolating missing road

segments of incomplete road data.
• We propose an algorithm for interpolating road segments.
• We verify our algorithm works well by the experiments

with the real incomplete data and trajectory data.
The remainder of this paper is organized as follows. Sec-

tion II introduces the related work. Section III describes the
preliminaries. Section IV presents our algorithm. Section V
presents the results obtained from the experiments, and Section
VI summarizes the paper.

II. RELATED WORK

Interpolation of road segments from GPS trajectories is
related to two lines of research; (1) constructing road data
and (2) updating road data.

First, we review some works for constructing (or infer-
encing) road data from GPS trajectories. This research topic
focuses on construction of comprehensive and accurate road
data. Edelkamp and Schrödl [6] apply k-means algorithm to
cluster GPS points. Then, in order to construct road data, it
connects clusters that GPS trajectories pass through. Davies et
al. [5] propose a 2D histogram-based algorithm, which divides
an area into grid cells and counts the number of GPS points
in each cell. When cells have larger numbers of GPS points
than the threshold, they decide that the cells include road
segments or intersections. Biagioni and Eriksson [1] extend the
algorithm [5]. It gradually decreases the threshold and avoids

TABLE I: Summary of notations

Symbol Meaning
p GPS point
t Trajectory (sequence of GPS points)
T Set of trajectory
R = (VR, ER) Incomplete road data
VR Set of intersections and curve points
ER Set of road segments

distR(v, v
′)

The shortest road network distance
between v and v′

distE(l, l
′) The Euclidean distance between l and l′

outputting spurious road segments. Cao and Krumm [2] pro-
pose an algorithm for repelling and attracting GPS trajectories
to construct several lanes of road segments. GPS trajectories
are repelled if the trajectories move the opposite direction each
other. On the other hand, if the trajectories move in the same
direction, they are attracted. Fathi and Krumm [8] propose
a junction detector that is trained by GPS points to learn
patterns of GPS points on intersections. Moreover, Chen et
al. [3] use additional information for learning such as types of
intersections to infer the correct map representation. Chen et
al. [4] also propose a junction detector from GPS trajectories,
but it does not require any training. This algorithm extends
DBSCAN with moving directions for detecting intersections.
This line of research needs a large amount of GPS trajectories
to construct road data. If the number of GPS points is small
in an area, they ignore the road segments and intersections
in the area for constructing accurate road data. Missing road
segments in road data are typically minor ones, and their traffic
volumes are relatively small. As a result, these works cannot
interpolate missing road segments.

Updating (or refining) road data focuses on updating an
existing road data using GPS trajectories. Rogers et al. [13]
and Guo et al. [9] propose frameworks to refine the centerlines
of the road segments. These frameworks infer the centerlines
of the road segments from GPS trajectories. The former
framework [13] refines the centerlines by the average of the
existing road data and the closest trajectory point, weighted by
the confidence in the road data and the trajectory. The latter
framework [9] calculates the centerlines based on a distribution
model of GPS points. Although these works update the road
data, they do not assume missing road segments.

III. PRELIMINARIES

In this section, we explain our notations and two techniques;
map matching and DBSCAN, as preliminaries of our algo-
rithm.

A. Trajectories

We here define several terms required to introduce our
problem. Table I summarizes the notations used in this paper.

Definition 1: (GPS point) A GPS point p has location
l, time stamp, and an identifier of device. The location l is
denoted by latitude and longitude. Since GPS points include

Fig. 2: Result of map matching for incomplete road network.

noise, l may have some errors. We do not know the ranges of
errors. �

Definition 2: (Trajectory) A trajectory t = {p1, p2 · · · , pn}
is a sequence of GPS points, where the number of GPS points
in t is n. We denote the number of GPS points in t by |t|.
The GPS points are in ascending order of the time stamp, and
all GPS points have the same device identifier. �
We denote the set of trajectories by T.

Definition 3: (Road data) Road data is represented by an
undirected graph R = (VR, ER), where VR and ER ∈ VR×VR
represent the set of intersections and curve points, and the
set of road segments, respectively. Each vertex v ∈ VR has
accurate location. The road data is incomplete, and thus it may
miss some intersections, curve points, and road segments. �
We denote the location of p and v by p.l and v.l, respectively.
From the locations of intersections and curve points, we
can calculate the distance between a GPS point and a road
segment. We define two distance: distR(u, v) and distE(l, l′).
distR(v, v

′) denotes the shortest road network distance be-
tween v and v′. On the other hand, distE(l, l′) denotes the
Euclidean distance between l and l′. We compute the length
d(t) of trajectory t by the following equation:

d(t) =

|t|−1∑
i=1

distE(pi.l, pi+1.l). (1)

In this paper, we define the problem as follows.

PROBLEM DEFINITION Given a set of trajectories T and a
road data R, we interpolate missing road segments into R by
using T.

B. Map matching

Map matching maps a set of GPS points with errors to
the corresponding locations on the road segments. However,
if the road data is incomplete, general map matching does not
work well. Figures 2 and 3 show the result of map matching
in Figure 1. Figure 2 shows the result of a map matching
technique for incomplete road data [10] while Figure 3 shows
the result of a different map matching technique for complete
road data [11]. Comparing two results, the map matching
technique for incomplete road data outputs more natural result
than it for complete road data.

We use the map matching technique for incomplete road
data [10]. We briefly show the algorithm. The map matching
algorithm is based on Hidden Markov model-based algorithm

Fig. 3: Result of map matching not for incomplete road
network.

p1

p2

p5

p3

p4
?5
4

?5
5

?5
6

?5
7

?6
5

?8
5

?8
4

?6
4

?7
5

?7
4

?8
6

?8
7

?9
4

?9
5
?9
6

Fig. 4: Candidate selection of map matching

[12]. It first selects a set of candidates Ci = {c0i , c1i , · · · , cKi }
for each pi ∈ t, where K is a parameter for setting the
maximum number of candidates. Candidates c1i , · · · cKi have
locations on the K closest road segments within a certain
range. c0i is a special point that has a location of pi itself
(the same location of the GPS point). Then, this algorithm
calculates the shortest road network distance and the Euclidean
distance between all candidates of pi and pi+1. That is, we cal-
culate distR(c

j
i , c

j
i+1) and distE(c

j
i .l, c

j
i+1.l) for 0 ≤ i ≤ n−1

and 0 ≤ j ≤ K. We construct a complete n-partite graph
whose vertices and edges represent the set of candidates of
GPS points and transitions between vertices. Weights of edges
represent transition probabilities that are computed from their
distances between vertices so that closer distances have higher
values. Finally, the path on the n-partite graph with the largest
transition probability is a matching result from p1 to pn. In
this paper, we call sub-trajectories that are through GPS points
off-road trajectories.

Figure 4 shows road data and five GPS points. The GPS
point p3 may be through a missing road segment. When we
set K as three, each candidate has at most four candidates.
Then we construct five-partite graph (see Figure 5). The path
(c11, c

1
2, c

0
3, p

1
4, p

1
5) with the largest probability becomes the

matching result. The off-road trajectory is (c12, c
0
3, p

1
4).

C. DBSCAN

DBSCAN [7] is a popular clustering technique and clusters
points if they are densely connected. DBSCAN has two
parameters; minPts and ϵ. If a points has at least minPts
points (including itself) within a circle whose radio is ϵ, the
point is called a core point. Each point closer to a core point
than ϵ belongs the same cluster. Moreover, if two core points

p1

?5
4

?5
5

?5
6

?5
7

p2

?6
4

?6
5

p3

?7
4

?7
5

p4
?8
4

?8
5

?8
6

?8
7

p5

?9
4

?9
5

?9
6

Fig. 5: n-partite graph of map matching

are located within ϵ, the core points belong the same cluster.
As a result, DBSCAN clusters densely connected points.

IV. PROPOSAL

We present our algorithm for interpolating missing road
segments. We first describe its design policy and then explain
our algorithm in detail.

A. Design Policy
We have two approaches for interpolating missing road

segments; (1) the construction approach and (2) the detection
approach. The construction approach first constructs a road
data from trajectories without using any road data, and then
integrate constructed and existing road data. The detection
approach detects candidates of missing road segments us-
ing trajectories and existing road data, and then interpolate
the candidates into the existing road data. For interpolating
missing road segments, we need to consider characteristics of
missing road segments. Missing road segments are typically
minor roads because major roads are preferentially updated.
The volume of traffic on minor roads are small compared to
major roads. Therefore, we have to detect the missing road
segments from a small number of trajectories. The construction
of road data [8] basically assumes large amount of trajectories
to construct comprehensive and accurate road data. In this
case, missing road segments may not appear in the constructed
road data because they are not reliable due to a small number
of trajectories and GPS errors. On the other hand, the detection
approach can find the minor roads from a small number of
trajectories. Thus, we select the detection approach as the basis
of our algorithm.

Our algorithm effectively interpolates missing road seg-
ments by using trajectories. For accurately interpolating miss-
ing road segments, we have three problems; (1) how to detect
candidates of missing road segments, (2) how to modify the
shapes of trajectories for natural interpolation, and (3) how
to integrate road segments that are close to each other. Our
algorithm solves these problems. For the first problem, we
detect candidates of missing road segments by using a map
matching technique for incomplete road data. For the second
problem, we modify the trajectories to take realistic shapes of
road segments by the proposed simplifying technique. For the
third problem, we cluster the candidates, and then integrate
the candidates in the same cluster.

B. Overview

Figure 6 shows an overview of our algorithm. Our algorithm
consists of four steps: (1) Extraction, (2) Simplification, (3)
Clustering, and (4) Integration. The extraction step extracts
candidates of trajectories that may be on missing road seg-
ments by the map matching algorithm [10]. The simplification
step simplifies the extracted trajectories to realistic shapes. The
clustering step clusters the simplified trajectories close to each
other. Finally, the integration step integrates the simplified
trajectories within the same cluster, and then interpolates it
into the road data.

C. Extraction

We extract sub-trajectories that may be on the missing road
segments. For this purpose, we use a map matching algorithm
for incomplete road data [10]. The algorithm basically maps
each GPS point to a point on a road segment, while it outputs
each GPS point itself if the mapped points on road segments
are quite distant on the road network distance. We extract off-
road trajectories which can be considered as trajectories in
missing road segments. However, off-road trajectories may be
caused due to GPS errors. Since short off-road trajectories with
small numbers of points are caused by GPS errors with high
probabilities, we use off-road trajectories with the numbers of
points larger than τ and whose lengths are larger than ψ as
the candidates of missing road segments. We extract reliable
candidates of missing road segments by the extraction step.

D. Simplification

It is not practical to directly interpolate off-road trajectories
into road data because off-road trajectories usually do not have
realistic shapes. More specifically, off-road trajectories are
often zigzag due to GPS errors. Our algorithm simplifies off-
road trajectories to change their shapes to realistic ones. Since
zigzag road segments are very rare in actual road networks, we
approximate off-road trajectories by the least number of points
to take straight lines. Our simplification technique repeatedly
judges whether trajectories are straight or not. It first calculates
angles and distances to a line between p1 and pn for all points
in the off-road trajectory. If all the angles and the distances are
smaller than θ and δ, respectively, we judge that the off-road
trajectory is straight. If the off-road trajectory is not straight,
we remove the last point from the trajectory. We iteratively
compute the off-road trajectory until it becomes straight, and
then we simplify the removed points in the same way. By
connecting all the straight lines, we obtain simplified off-road
trajectories.

Figure 7 shows an example of straight line judgment. In the
figure, a trajectory has six GPS points, where 1 and 6 are the
first and last GPS points in the trajectory, respectively. Each
GPS points compare the distance and the angle to the line
between 1 and 6 (red line). If the angles and distances are
smaller than θ and δ, respectively, we judge that the trajectory
is straight.

Extraction Simplification Clustering Interpolation

DBSCAN

Integration

Straight�line

judgement

Fig. 6: An overview of our algorithm

à7

1

2

3

4

5

6

à6

Ü6

Ü7
1

2

3

4

5

6

Fig. 7: An example of straight line judgment

E. Clustering

If off-road trajectories are caused due to missing road
segments, several off-road trajectories can be close each other.
On the other hand, if off-road trajectories are caused due to
GPS errors, the off-road trajectories are distant from other tra-
jectories. Therefore, we find sets of trajectories that are close
each other for reliable interpolation. Our clustering technique
is based on DBSCAN [7]. First, we compute the representative
point lt of an off-road trajectory by the following equation:

lt = centroid of p1.l and p2.l, where (2)
distE(p1.l, p2.l) ≥ distE(p.l, p

′.l) for ∀p, p′ ∈ t.

lt is a centroid of two GPS points that have the longest Eu-
clidean distance among GPS points in the off-road trajectory.
We set L as the set of lt for each t.

We cluster the L for each off-line trajectory by DBSCAN.
Here, the parameters of DBSCAN affect clustering results,
and thus we have to set appropriate values for the parameters.
DBSCAN has two parameters ϵ and minPts to determine the
density of points. We set a user-specified value to minPts but
compute ϵ from trajectories. ϵ is computed as the following
equation.

ϵ = max
t∈T

max
p∈t

distE(lt, p.l). (3)

Intuitively, ϵ is the largest value among Euclidean distances
between the centroid points and each GPS point on the trajec-
tories corresponding to the centroid points. The reason we set ϵ
by Equation 3 is that their distances between the road segments
should be closer than ϵ if trajectories represent the same
missing road segments. In other words, if the trajectories do
not represent the same missing road segments, their distances
should be larger than ϵ. Meanwhile, as we mentioned above,

Fig. 8: An example of integration

minPts is given by users in our algorithm. It is highly related
to the accuracy and comprehensiveness of interpolation. When
minPts is large, we interpolate the missing road segments on
which many vehicles pass, and the number of interpolated
road segments becomes small. When minPts is small, we
interpolate many missing road segments with less accuracy.
Thus, users set arbitrary values to minPts depending on their
requests (i.e., comprehensive or reliable interpolation).

F. Integration and interpolation

Even if off-road trajectories belong to the same cluster, they
may not represent the same road segment, for example cross-
roads. Since the trajectories with same cluster may represent
multiple road segments, we need to distinguish different road
segments and integrate the road segments by joining them by
intersections.

For integrating off-road trajectories, we handle the trajecto-
ries as a graph Gt. First, we pick the off-road trajectory with
the largest number of GPS points among the trajectories in
the same cluster. The trajectory is denoted by Gt = (Vt, Et),
where Vt and Et represent the set of GPS points and sequences
between the GPS points, respectively. For other trajectories, if
their GPS points are not closer to any points in Vt than σ,
we add the points to Vt and add the sequences to Et. By
this process, we obtain a graph that represents missing road
segments. Since the first and end of GPS points of off-road
trajectories are mapped to the points on road data, we naturally
interpolate the road segment to the road data.

Figure 8 shows an example of integration. In this example,
we integrate two trajectories (gray and blue points) after the
simplification process. Gt first represents the gray trajectory.
Three GPS points of blue trajectories are close to the GPS
points of the gray trajectory while the left-top GPS points is
not closer to them. Thus, the left-top GPS point is added to
Gt. Finally, we obtain the integrated road segments.

G. Pseudo-code of our algorithm

Algorithm 1 shows the pseudo-code of our algorithm. It
first extracts the set of trajectories that are through missing
road segments with high probabilities (lines 1 – 5). Then, the
extracted trajectories are simplified to take straight as possible
(lines 6 – 15). Before executing DBSCAN, our algorithm com-
putes the set of L representative points of off-line trajectories
and ϵ (lines 16 – 28). It executes DBSCAN with L, ϵ, and
the given minPts (line 29). Finally, it integrates the off-line
trajectories belonging to the same cluster and interpolates the
integrated trajectories as missing road segments to the road
data (lines 30 – 41).

V. EXPERIMENTAL STUDY

We perform experiments to evaluate the effectiveness and
accuracy of interpolation of our algorithm. All the algorithms
are implemented in C++ and run on an Intel(R) Xeon(R) CPU
E5620 @ 2.40GHz with 32.0 GB of RAM.

A. Dataset

For the experiments, we use real trajectory data T-drive [15]
and road data OpenSteetMap. The T-drive dataset includes
GPS data obtained by taxis in Beijing. The dataset includes
10,357 taxis data from 2008 February second to eighth. Some
GPS data have incorrect data such as missing time stamps,
latitude, or longitude, and very long distance between two
GPS points with close time stamps. Therefore, we clean
such incorrect data. We also eliminate trajectories that are
not in Beijing or have a few number of points. Finally,
the number of taxis is 101. The minimum, maximum, and
average numbers of GPS points on taxis are 6,746, 147,739,
and 30,617, respectively. We extract Beijing road data from
OpenStreetMap. OpenStreetMap provides us free road data
that is manually updated by voluntary users but incomplete.
We summarize the trajectory data and road data in Tables II
and III, respectively.

B. Setting

Our algorithm interpolates missing road segments with
several shapes. We categorize the shapes of interpolated road
segments into three types; straight, curve, and complex (see
Figures 9, 10, and 11). The straight type includes just two
GPS points , and the other two types include more than two
GPS points. The curve type includes no junctions, while the
complex type includes junctions.

Our algorithm has several parameters. For the extraction
step, we use 2 and 5 meters as τ and ψ, respectively. For the
simplification step, we use 15 degrees and 2 meters as θ and

Algorithm 1: Algorithm for Interpolating missing road
segments

input : Set of trajectories T, road data R, parameters; ψ, τ ,
θ, δ, minPts , σ

output: Interpolated road data R
/* Extraction */

1 To ← MapMatching(T, R);
2 C← null;
3 for ∀t ∈ To do
4 if t.n < τ or d(t) < ψ then
5 remove t from To;

/* Simplification */
6 Ts ← null;
7 for ∀t ∈ To do
8 ts ← {t.begin};
9 while t.size ≥ 2 do

10 ttmp ← t;
11 while not StraightJudge(ttmp, θ, δ) do
12 ttmp.pop();

13 ts ← ts ∪ ttmp.end;
14 t.remove(ttmp.begin, ttmp.end -1);

15 Ts ← Ts ∪ ts;

/* Clustering */
16 for ∀t ∈ Ts do
17 dmax ← 0;
18 for ∀p1, p2 ∈ t do
19 if dmax < distE(p1.l, p2.l) then
20 dmax ← distE(p1.l, p2.l);
21 lt ← centroid of p1.l and p2.l;

22 L← L ∪ lt;
23 ϵ← 0;
24 for ∀t ∈ Ts do
25 lt ← the corresponding point of t in L;
26 for ∀p ∈ t do
27 if ϵ < distE(lt, p.l) then
28 ϵ← distE(lt, p.l);

29 C ← DBSCAN(L, ϵ, minPts);
/* Integration and Interpolation */

30 for ∀C ∈ C do
31 Gt ← t with the largest size in C;
32 for ∀t ∈ C do
33 for ∀p ∈ t do
34 if p is not closer to any v in Vt than σ then
35 Vt ← Vt ∪ p; Et ← Et ∪ (p, vp); vp ← p;
36 Flag ← true;

37 else
38 if Flag then Et ← Et ∪ (p, vp);
39 Flag ← false;
40 vp ← the closest v to p;

41 add Gt to R;

δ, respectively. For the integration step, we use 2 meters as σ.
We vary minPts for evaluating the accuracy of interpolation.

C. Examples of interpolated road segments

We show the results of missing road segments interpolated
by our algorithm. Figures 9, 10, and 11 show examples of

(a) Interplated road segments (b) OpenStreetMap (c) Google map

Fig. 9: Interpolating a straight road segment

(a) Interplated road segments (b) OpenStreetMap (c) Google map

Fig. 10: Interpolating a curve road segment

(a) Interplated road segments (b) OpenStreetMap (c) Google map

Fig. 11: Interpolating a complex road segment

TABLE II: Trajectory

of taxis 101
The min # GPS points per taxi 6,746
The max # GPS points per taxi 147,739
Average # GPS points per taxi 30,617

TABLE III: Road data

Date 2015 June 27th
Location Beijing
of vertices 306,311
of edges 334,315

successful interpolation. These figures show (a) the inter-
polated road segments, (b) OpenStreetMap, and (c) Google
map. We first compare the road data between OpenStreeMap
and Google map. These figures show the OpenStreetMap in
Beijing is incomplete compared to Google map. From these
figures, we can see the importance of updating real-world road

data.

Figure 9 shows the result of a straight segment. Our algo-
rithm interpolates the road segment whose shapes is almost
same to the road segment on Google map. Our simplification
technique works well to interpolate straight road segments.
Next, Figure 10 shows the result of a curve segment. The curve
segment is also interpolated well by simplifying trajectories.
Finally, Figure 11 shows the result of complex road segments.
The complex road segment has several junctions. Our integra-
tion step integrates the trajectories for connecting them and
avoiding redundant road segments. Our algorithm modifies
the off-road segments to the realistic shapes and appropriately
integrates the multiple road segments.

Our algorithm can interpolate several types of missing road
segments. It is useful for updating the real-world incomplete
road data.

TABLE IV: # of interpolated segments for each minPts

minPts # of clusters Straight Curve Complex
1 512 109 102 301
2 167 18 19 130
3 75 5 5 65
4 48 3 3 42
5 37 2 2 33

TABLE V: Accuracy for each minPts

minPts # of samples Straight Curve Complex Accuracy
1 60 19/17 21/18 17/11 76.6%
2 20 2/1 3/3 15/8 60.0%
3 8 2/0 0/0 6/4 50.0%
4 6 0/0 0/0 6/3 50.0%
5 5 0/0 0/0 5/2 40.0%

D. Comprehensiveness and Accuracy

We evaluate the comprehensiveness and accuracy of our
algorithm. A large number of interpolated road segments
indicates high comprehensive interpolation.

Table IV shows the numbers of interpolated road segments
for each minPts . From Table IV, we can see that the number
of clusters decreases as minPts increases. When minPts
is small in DBSCAN, the GPS points likely become core.
On the other hand, when minPts is large, the GPS points
likely become noise. Comparing the number of interpolated
road segments for each type, the number of complex road
segments is larger than those of the other two types. Since
interpolated road segments are mainly in residential areas, the
road segments are often complex. For example, our algorithm
detects parking areas as missing road segments. The reasons
that interpolated segments are mainly in residential areas are
that (1) we use the trajectories of taxis and (2) missing road
segments are often minor roads.

We judge the interpolation is accurate if the missing road
segments exist in Google map. Since the number of interpo-
lated road segments is large, we randomly pick some inter-
polated road segments as samples for evaluating the accuracy.
Table V shows the numbers of samples and the accuracy of
interpolation for each type and minPts . In the table, x/y
denotes the number x of samples and the number y of accurate
interpolated roads among samples. From this table, we can
see that the accuracies of straight and curve road segments
are higher than that of complex road segments. Since the
two types are simpler than complex one, such interpolated
road segments become accurate. As the number of minPts
increases, the number of complex road segments increases, and
thus the accuracy decreases. This is because the interpolated
road segments are often complex when minPts is large, and
it is difficult to appropriately interpolate the complex road
segments. Improvement of the accuracy of the complex road
segments is a part of our future work.

VI. CONCLUSION

In this paper, we proposed an algorithm for interpolating
missing road segments by using vehicle trajectory data. The
algorithm uses map matching and clustering techniques to

appropriately interpolate missing road segments. Through ex-
periments using real incomplete road data and trajectory data,
we verified that our algorithm effectively interpolates missing
road segments.

As a part of our future work, we apply our algorithm to
road data on developing countries where OpenStreetMap is
more reliable than Google map such as Mongolia. We also
employ machine-learning techniques to learn the shapes of
the road segments from existing road data to more naturally
interpolate road segments.

ACKNOWLEDGEMENT

This research is partially supported by the Grant-in-Aid
for Scientific Research (A)(JP16H01722) and Grant-in-Aid for
Young Scientists (B)(JP15K21069).

REFERENCES

[1] J. Biagioni and J. Eriksson, “Map inference in the face of noise and
disparity,” in ACM SIGSPATIAL, 2012, pp. 79–88.

[2] L. Cao and J. Krumm, “From GPS traces to a routable road map,” in
ACM SIGSPATIAL, 2009, pp. 3–12.

[3] C. Chen, C. Lu, Q. Huang, Q. Yang, D. Gunopulos, and L. Guibas,
“City-scale map creation and updating using GPS collections,” in KDD,
2016, pp. 1465–1474.

[4] Z. Chen, H. T. Shen, and X. Zhou, “Discovering popular routes from
trajectories,” in ICDE, 2011, pp. 900–911.

[5] J. J. Davies, A. R. Beresford, and A. Hopper, “Scalable, distributed,
real-time map generation,” IEEE Pervasive Computing, vol. 5, no. 4,
pp. 47–54, 2006.

[6] S. Edelkamp and S. Schrödl, “Route planning and map inference with
global positioning traces,” Computer science in perspective, pp. 128–
151, 2003.

[7] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise,”
in KDD, 1996, pp. 226–231.

[8] A. Fathi and J. Krumm, “Detecting road intersections from GPS traces,”
in ACM SIGSPATIAL, 2010, pp. 56–69.

[9] T. Guo, K. Iwamura, and M. Koga, “Towards high accuracy road maps
generation from massive GPS traces data,” in Geoscience and Remote
Sensing Symposium, 2007, pp. 667–670.

[10] J.-H. Haunert and B. Budig, “An algorithm for map matching given
incomplete road data,” in ACM SIGSPATIAL, 2012, pp. 510–513.

[11] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang, “Map-
matching for low-sampling-rate GPS trajectories,” in ACM SIGSPATIAL,
2009, pp. 352–361.

[12] P. Newson and J. Krumm, “Hidden markov map matching through noise
and sparseness,” in ACM SIGSPATIAL. ACM, 2009, pp. 336–343.

[13] S. Rogers, P. Langley, and C. Wilson, “Mining GPS data to augment
road models,” in KDD, 1999, pp. 104–113.

[14] Y.-T. Wen, J. Yeo, W.-C. Peng, and S.-w. Hwang, “Efficient keyword-
aware representative travel route recommendation,” IEEE TKDE, vol. 29,
no. 8, pp. 1639–1652, 2017.

[15] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang,
“T-drive: driving directions based on taxi trajectories,” in ACM SIGSPA-
TIAL, 2010, pp. 99–108.

