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Abstract. Searches for objects associated with location information and
non-spatial attributes have increased significantly over the years. To ad-
dress this need, a top-k query may be issued by taking into account both
the location information and non-spatial attributes. This paper focuses
on a distance-based top-k query which retrieves the best objects based
on distance from candidate objects to a query point as well as other
non-spatial attributes. In this paper, we propose a new index structure
and query processing algorithms for distance-based top-k queries. This
new index, called SKY R-tree, drives on the strengths of R-tree and Sky-
line algorithm to efficiently prune the search space by exploring both
the spatial proximity and non-spatial attributes. Moreover, we propose a
variant of SKY R-tree, called S2KY R-tree which incorporates a similar-
ity measure of non-spatial attributes. We demonstrate, through extensive
experimentation, that our proposals perform very well in terms of I/O
costs and CPU time.

Keywords: Top-k query, Spatial database, R-tree, Skyline, Location-
based service.

1 Introduction

With the development of positioning technology and wide availability of mobile
devices, efficient location-based search becomes essential for many applications,
where both the location information and non-spatial attributes are considered.
For example, Yelp and Foursquare', two well known location-based social net-
working services (LBSNs), may employ location-based search to assist their users
to find restaurants based on specified location and user preference. Consider Fig-
ure 1, where 9 objects 01,09, -+ , 09 are located in spatial area (illustrated on the
left of the figure), and each of them is associated with 2 non-spatial attributes,
i.e., price and rating (as illustrated by the table on the right). Given a query
point ¢, a user wants to find the best restaurant o based on both the distance
between ¢ and o as well as the user’s preference in terms of price and rating of

! http://www.yelp.com/,https://foursquare.com/
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Fig. 1. A spatial area containing objects and a query point

the restaurants.? The best object is determined based on the user’s preference
and the query point.

Several top-k queries for spatial database have been proposed recently [3, 10].
In [10], a distance-based top-k query which takes into account both the location
and other non-spatial attributes has been proposed. In this query, a user desig-
nates the number of requested objects k, a query point ¢, and a weight « that
controls the importance between the roles of distance and other non-spatial at-
tributes in the search. In other words, the distance-based top-k query returns
k objects ranked based on “the distance between the objects and ¢” and “the
user preference over the non-spatial attributes”. Distance-based top-k queries in
[10] retrieve the best k objects based on the branch-and-bound algorithm [9].
However, this branch-and-bound algorithm must construct the tree structure for
each distance-based top-k query in the system. Since the paper [10] focuses on a
continuous query, it does not care about the cost that constructs the tree struc-
tures, but it is absolutely inefficient for a snapshot query. To the best knowledge
of the authors, efficient indexing techniques for distance-based top-k queries have
not been reported in the literature.

In this paper, we propose a new indexing framework for processing distance-
based top-k queries. This framework exploits the ideas behind R-tree [5] and
skyline algorithm [2], and thus called SKY R-tree. Notice that R-tree is a very
efficient index for supporting spatial search while skyline algorithms are very ef-
fective for pruning the search space to find the best objects (i.e., skyline points)
in terms of non-spatial preference. Thus, SKY R-tree aims to prune the search
space by exploring the location and non-spatial attributes. Each node of SKY
R-tree records a summary of location information and skyline points of objects
in the sub-tree rooted at the node. Moreover, to avoid unnecessarily increasing
the number of skyline points, each node employs Abstract skyline [11] to limit
the number of skyline points stored. Utilizing the location information to esti-
mate the spatial distance of candidate objects to a query point, and the skyline
points to estimate the values of their non-spatial attributes, the proposed query
processing algorithm is able to efficiently answer the distance-based top-k query.

2 In this example, smaller values of non-spatial attributes are better.



222 Y. Sasaki et al.

To incorporate a similarity measure of non-spatial attributes, we also propose
a variant of SKY R-tree, called S2KY R-tree. While SKY R-tree mainly considers
location information in its construct, S2KY R-tree considers both the location
information and non-spatial attributes, and thus is able to process distance-based
top-k queries efficiently.

The main contributions of this paper are summarized as follows.

— We propose a new indexing technique which incorporates R-tree and skyline
to support distance-based top-k queries.

— We propose an efficient algorithm for processing distance-based top-k queries.

— We demonstrate, through extensive experimentation, that our proposal per-
forms very well in terms of both the I/O costs and CPU time.

The remainder of this paper is organized as follows. Section 2 describes the
problem formulation. Section 3 presents the proposed index structure. Section 4
presents the enhanced approach. Section 5 summarizes the results obtained in the
simulation experiments. Section 6 introduces related work. Section 7 summarizes
the paper.

2 Preliminaries

2.1 Problem Formulation

Given an object dataset O in which each object o has location information o.loc
and non-spatial attribute o.att. We assume o.loc is in a two dimensional geo-
graphical space composed of latitude and longitude, and o.att is a d-dimensional
vector where o.att; € [0,1](i =1,--- ,d). We further assume that smaller values
of these non-spatial attributes, e.g., price, are preferable, without loss of gener-
ality. Each score of object is calculated based on a query ¢ which is represented
by a query point ¢.loc and a query weight ¢.w, where ¢.w is a vector of weights
such that q.w; > 0(i = 1,---,d) and Z?:1 q.w; = 1. Accordingly, the ranking
score of an object o is calculated by the following equation.

D(q.loc, o.loc)
maxD

Z?:l q.w; - o.atti (1)
maxA

score(q,0) = «

+(1—a)

where a € [0, 1] is a parameter for balancing spatial proximity and non-spatial
attributes, D(q.loc, 0.loc) is the Euclidian distance between ¢ and o, and maxzD
and maxA are maximal distance and dissimilarity for normalization, respec-
tively. Based on the above scoring function, the distance-based top-k query is
defined as follows.

Definition 1 (Distance-Based Top-k Query). Given a query q and the
number of objects of interest k, the result of the distanced-based top-k query
q includes a set of objects TOPy(q) such that TOPy(q) C O, |TOPy(q)| = k
and Yo;,0; : 0; € TOPy(q),0; € O —TOPy(q), it holds that score(q,0;) <
score(q, 0;).
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Notice that, in this paper, if some objects have the same kth score, the result
retrieves one (or some) of the objects that meet the requirements of the TO Py (q).

Example: Recall the example in Figure 1. Let the query be ¢ (¢.loc={0.5, 0.5},
q.w={0.5, 0.5}), @ be 0.5, and k = 2. By calculating the score of each object by
Eq. (1), the top-1 and top-2 objects are o7 and o4, respectively.

2.2 Background

Here, we introduce Skyline and Max aR-tree which inspire our proposal of inte-
grating R-tree and Skyline.

Skyline. In distance-based top-k queries, the scores of objects factor in both
the location and non-spatial attributes. When focusing on only the non-spatial
attributes, we can find the best object from skyline set because the top-k query
is defined by linearly weighting the non-spatial attributes.

In the following we define the skyline set and discuss its relation to top-k
queries.

Definition 2 (Skyline). An object o; € O is said to dominate another object
o; € O, if for each attribute att, o;.att, < oj.att, and at least one attribute
atty o;.atty < oj.att,. The skyline is a set of points SKY C O which are not
dominated by any other points. The points in SKY are called skyline points.

Observation 1. The top-1 object obtained for a query that employs an increas-
ingly monotone function on the non-spatial attributes belongs to the skyline set
[12].

From the skyline points, we can find the best objects (without considering the
factor of location). Thus, skyline is useful to prune the search space from the
aspect of non-spatial attributes.

Example: Consider the right graph in Figure 2 which plots the non-spatial at-
tributes of the objects in Figure 1 in a two-dimensional space. As o4 is dominated
by o7, 04 is not a skyline point. In this figure, skyline points are o1, 02, 04, 07,
and 0sg.

Max aR-tree. Maz aR-tree proposed in [7] can be utilized for distance-based
top-k queries. In Max aR-tree, each node has a summary of location information
and non-spatial attributes of descendant nodes. First, as location information,
each node records a Minimum Bounding Rectangle (MBR) which is a rectangle
contains all objects in the sub-tree rooted at the node. Additionally, each node
in Max aR-tree records the best non-spatial attribute of each dimension in the
sub-tree rooted at the node. Max aR-tree can prune the search space by non-
spatial attribute, but it is not efficient because the best non-spatial attribute
recorded in a node is quite different from an actual best score of object.

Example: Figure 3 illustrates a Max aR-tree indexing for the nine objects in
Figure 1. Notice that, while Figure 2 shows the MBR recoded in each node and
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Fig. 2. Minimum bounding rectangles and non-spatial attributes

non-spatial attributes of each object, Table 1 shows the best values recorded in
an internal node and non-spatial attributes of objects recorded in a leaf node.
In this example, a leaf node R1 records (01:0.1, 1.0) and (02:0.8, 0.1), and an
internal node R5 records (R1:0.1, 0.1) and (R2:0.3, 0.4). From R5’s view, R1
seems to record the object with the best non-spatial attribute, however, the
actual non-spatial attributes in the objects recorded in R1 are quite different.

Table 1. Best values which are recorded
in each node in Max aR-tree

R7:[R5 [ Re |
Node Best value
Rs:[RI[R2 | Re:[ R3 [ Rd ] R7  (R5:0.1,0.1), (R6:0.2,0.2)
R6  (R3:0.2,0.3), (R4:0.6,0.2)
Ri:[o, [o,] R2[0:]0,] R3:[os]o0,] R4[o;]0s]0]  R5 (R1:0.1,0.1), (R2:0.3,0.4)
R4 (07:0.3,0.3), (05:0.6,0.2), (09:0.6,0.6)
Fig. 3. Index structure in corresponding R3  (05:0.9,0.3), (06:0.2,0.7)
R-tree R2  (03:0.3,0.8), (04:0.3,0.4)
Rl (01:0.1,1.0), (02:0.8,0.1)

3 Hybrid Indexing for R-tree and Skyline

We present a new indexing framework that exploits the strengths of R-tree and
skyline, called SKY R-tree. Moreover, we develop an algorithm for processing
distance-based top-k queries.

3.1 SKY R-tree

SKY R-tree is essentially an R-tree, where each index node records skyline points
of all objects in the sub-tree rooted at the node.

The design of SKY R-tree aims at pruning the search space by exploring non-
spatial attribute. Ultimately, each node records all the non-spatial attributes of
objects in a sub-tree rooted at the node in R-tree. To reduce the I/O cost in
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R-tree, the number of child nodes is limited by a size of information recorded in
one index node. Hence, if each node contains too large a volume of information,
the efficiency decreases. Due to this constraint, it is important to select the
information needed for efficiently pruning the search space. Our design considers
two goals: (1) to guarantee an exact result, and (2) to represent a large amount of
information in a compact form. In SKY R-tree, we choose skyline points because
they elegantly meet these two goals.

When processing distance-based top-k queries, skyline points are very helpful
to process the non-spatial attributes of candidate objects. However, the number
of skyline points depends on the distribution of non-spatial attributes. If there are
a large number of skyline points, the size of some nodes may become very large,
resulting in deterioration of the performance. Therefore, SKY R-tree reduces
the number of stored skyline points, while guaranteeing the correctness of query
processing (and thus the result). If the number of skyline points exceeds a preset
maximum number of skyline point |[SKY|, the skyline points are aggregated by
Abstract skyline [11], which picks |SKY| representative skyline points from the
entire skyline points.

In SKY R-tree, each leaf node contains a number of entries of the form (o,
o.loc, o.att). Meanwhile, an internal (non-leaf) node contains a number of entries
of the form (np, rectangle, sp), where np is a pointer to one of its child node,
rectangle is the MBR, and sp is the skyline points of the child nodes.

Example: Figure 3 illustrates the SKY R-tree for the nine objects in Figure
1. Note that, while the index is structured as a MAX aR-tree, the information
associated with the tree nodes is different. Let the maximum number of skyline
points be 2. Table 2 shows the skyline points associated with an internal node as
well as non-spatial attributes associated with objects in a leaf node. For example,
R5 stores 3 skyline points (i.e., <0.1,1.0>, <0.8,0.1> for R1 and <0.3,0.4> for
R2). As R7 can record only 2 skyline points for R5, we merge <0.1,1.0> and
<0.3,0.4> into <0.1,0.4> and records it along with <0.8,0.1> for R5.

Table 2. Skyline points recorded in each node

R1

Node Skyline point
R7 (R5:<0.1,0.4>,<0.8,0.1>), (R6:<0.2,0.7>,<0.3,0.2>)
R6 (R3:<0.9,0.3>,<0.2,0.7>), (R4:<0.3,0.3>,<0.6,0.2>)
R5 (R1:<0.1,1.0>,<0.8,0.1>), (R2:<0.3,0.4>)
R4 (07:0.3,0.3), (08:0.6,0.2), (09:0.6,0.6)
R3  (05:0.9,0.3), (06:0.2,0.7
R2 (
(

03:0.3,0.8§, 204:0.3,0.4%
01:0.1,1.0), (02:0.8,0.1)

We next present how to construct SKY R-tree. Similar to the R-tree algorithm
[5], it repeats the Insert function in Algorithm 1, which uses a ChooselLeaf to select
a leaf node with the smallest increase in MBR of the node in order to insert an
object into the node as an entry. If the insertion exceeds the maximum node
capacity, a Split is incurred to divide the node into two MBRs distant from each
other.
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Algorithm 1. Insert algorithm

: N < ChooseLeaf(object)
: Add object to node N.
if exceed maximum number of child nodes of N then
{N1, N2} < N.Split()
if N is root then
Initialize new root NR and add N1 and N2 to NR
else
Ascend from N to root, and update MBR and skyline points
end if
10: else if N #root then
11:  Update the MBR and skyline points of the ancestor node of NV
12: end if

S I

©

What makes SKY R-tree essentially different from the conventional R-tree is
the update of the skyline points in ancestor node (line 11).

3.2 Distance-Based Top-k Query Processing

To process distance-based top-k queries, we exploit the best-first traversal. The
best-first traversal algorithm searches the entry with the smallest score in a
heap. The score for an individual object has been defined previously in Eq. (1).
Therefore, we define the score for an index node N here as follows.

MinD(q.loc, N.M BR)
MaxD
d
+(1 — a)argming, v 4, Z q.w; - p.att; (2)
i=1

score(q,N) = «

where MinD(q.loc, N.M BR) denotes a minimum Euclidian distance between
the M BR of N and q.loc. Eq. (2) provides a possible minimum score (i.e., lower
bound) corresponding to the descendant objects of the node N.

In Algorithm 2, MINHEAP is a heap which contains index nodes and objects
sorted in ascending order of their scores. Hence, if the first entry in MINHEAP is
an object, it is the best object in MINHEAP (because the other objects definitely
have larger scores than the first one). When the number of object in TOPy(q)
exceeds k, the processing terminates (lines 6-7). Here, since objects and nodes in
MINHEAP are sorted in ascending order, objects and nodes with larger scores
than the top-k objects in MINHEAP are discarded (line 11). While the number
of objects and nodes in MINHEAP becomes small, the computational overhead
decreases because the sorting time becomes small.
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Algorithm 2. Search algorithm

Input: k, ¢ and index structure
Output: TOP(q)

1: MINHEAP.insert(root, 0)

2: while MINHEAP size() # 0 do
3: N < MINHEAP first()

4: if N is object then
5: TOPy(q).insert(N)
6: if [TOPy(q)| > k then
7 return TOPy(q)
8: end if
9: else
10: for Vn,; € N.entry do
11: if Number of objects with smaller score in MINHEAP than score(q, n;) <
(k—|TOPx(q)|) then
12: if N is a leaf node then
13: MINEHEAP.insert( Object, score(q, n;))
14: else
15: MINHEAP.insert(Node, score(q, n;))
//If score is a same value, a smaller MBR is better.
16: end if
17: end if
18: end for
19:  end if

20: end while

We prove that TOPyx(q) is an exact result by the following theorem.

Theorem 1. The score to an index node N is smaller than the scores of its
descendant object o for any query q.

Proof. The score factors in (i) location proximity and (ii) non-spatial
attributes. First, the MBR of N includes all descendant objects, i.e., Yo €
descendant objects of N; MinD(q.loc, N.MBR) < D(q.loc,0.loc). Second, the
skyline points of N dominate or equal to all descendant objects, i.e.,
argminype n_sp Z?:l q.w; - p.att; < Zle q.w; - o.att; . These inequalities imply
that score(q, N) < score(g, o). O
From this theorem, it follows that if the score of an object is smaller than the
score of an index node, the score of the object is smaller than that of all descen-
dant objects of the index node, i.e., the first object in MINHEAP is the best
object.

4 Enhanced SKY R-tree

SKY R-tree is constructed based on locations of objects. However, the non-
spatial attributes also play a role in the distance-based top-k queries. Thus, we
argue that the locality of non-spatial attributes should also be considered in
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construction of the index such that the cost of storage access can be reduced.
Therefore, by considering a similarity measure of non-spatial attributes of ob-
jects, we propose a variant of SKY R-tree, called S2K'Y R-tree (similarity skyline
R-tree).

4.1 S2KY R-tree

The S2KY R-tree inherits a similar idea from SKY R-tree, i.e., each index node
records skyline points of its subtree. However, its clustering strategy is different.
Thus, its Chooseleaf and Split are different from that of SKY R-tree in Algorithm
1 by recording different child nodes at each internal node. Notice that SKY R-
tree takes into account only the areas of MBRs under examination. On the other
hand, S2KY R-tree takes into account both the areas of MBRs as well as the
similarity of non-spatial attributes. To choose an appropriate insertion path for
a new object, S2KY R-tree selects a child node as described below.

Let Eq,--- , E, be the entries in the current node, and let o be the object to
be inserted. The corresponding R-tree calculates an increased area of MBR by
the following equation.

Arealncrease(o, Ey) = Area(o + E) — Area(Ey) (3)

where Area(zx) is an area of the MBR including z, and E, (1 < z < p) is an
entry (child node) in the current node. A small Arealncrease means the new
object is close to the descendant objects in the child node.

On the other hand, S2KY R-tree also considers the similarity of non-spatial
attributes which is defined as follows.

Definition 3 (Similarity measure of non-spatial attributes). Similarity
18 a distance between non-spatial attributes of new object and skyline points in
entry E.
Similarity(o, E;) = min dist(o.att,p) (4)
VpEE,.sp
where dist(x,y) denotes the distance between non-spatial attribute of x and y.
Finally, we calculate Increase by summing of Arealncrease and Similarity.

Arealncrease(o, E,)
MazxArea
Similarity(o, E;) (5)
MaxSim

Increase(o, E;) = 8
+(1—-5)

where MaxArea and MaxSim are the size of entire area and the maximum
similarity used for normalization, and (3 is a weighting parameter. The node with
the smallest Increase is chosen as the next node because a small Increase means
that the distance between E and o is a small (and the non-spatial attributes are
similar). This calculation is repeated until progressing to a leaf node in Algorithm
3.
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Algorithm 3. ChooseLeaf algorithm
1: N < the root

2: while 1 do

3: if N is a leaf node then

4 return N

5 end if

6: N < np in the entry in N with the smallest increase
7: end while

If is 1 in Eq. (5), S2KY R-tree is the same as SKY R-tree. The best S is
empirically determined by queries and distribution of non-spatial attribute.

Moreover, we define Split function and the difference between skyline sets in
two child nodes by the following equation.

> minygesKkyg dist(p,q)
pESKY B

Sdist(SKYa, SKYg) = ey ]

Z ESKY minVPESKYA dif"t(%p)

T Sk yal IS K Y| (6)
This equation calculates the average minimum distance between skyline points.
A small Sdist(x,y) means that skyline sets « and y in the two nodes is closer to
each other.

Algorithm 4. Split algorithm

1: for V pair of E; and Ej; in entries do

dij < area(E; + Ej) — area(E;) — area(Ej).
3 simi;  Sdist(SKYE, ,SKYE;);

4: difij = Bdi; + (1 — ﬂ)szm”
5

6

: end for
: Choose the pair with the largest dif value to be the first elements of the two group

7: while not all entries in N belong a group do

8:  if one group needs to include all remaining entries then
9: Assign all remaining entries to it and break

10:  end if

11:  Calculate Increase for all remaining entries to two groups

12:  Choose the entry with the largest Increase and add it to the other group
13: end while

In Algorithm 4, the first two entries are selected as the first elements (lines 1—
6). Other entries are assigned to either groups. To avoid assigning an entry with
a large Increase to a group, the entry with the largest Increase is assigned to
the other group in order (each entry has two Increases due to two groups) (lines
11-12). Moreover, to avoid a bias of the number of child nodes in two groups,
the minimum number of child nodes are determined in advance (basically a half
of the maximum number of child nodes) (lines 8-9).
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4.2 Query Processing

We use Algorithm 2 for processing of distance-based top-k queries on S2KY R-
tree. In S2KY R-tree, each leaf node are more likely to record similar objects.
Since k objects with better scores are inserted to MINHEAP earlier than SKY
R-tree, the number of objects and nodes in MINHEAP becomes smaller. As a
result, the computational overhead may be reduced.

5 Performance Evaluation

5.1 Simulation Model

We evaluate SKY R-tree and S2KY R-tree to validate our idea in processing the
distance-based top-k query, by using Max aR-tree as the baseline for comparison.

Datasets. We use real location sets for objects, where the real location set is
a set of points of interests located in Tokyo (10km x 10km) extracted from
Foursquare. The dataset includes 45,129 objects. As the location set extracted
from Foursquare has no non-spatial attribute, we added synthetic attributes to
those points of interests. We use 2 types of synthetic datasets for non-spatial
attributes: uniform and anti-correlated.

Setup. All index structures are in memory, and we assume the page size is 4KB.
The size of an index node is (16 +4d-|SKY])B, i.e., each node has [4,096/(16 +
4d-|SKY|)] child nodes (In Max aR-tree, the size of an index is the same when
|[SKY| = 1). For SKY R-tree and S2KY R-tree, the default values of |SKY|
and (8 are set at 5 and 0.8, respectively. All algorithms implemented in c++,
and experimented on a server with Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz
with 8.00 GB RAM.

For each experiment, we generate 100 queries with randomly generated lo-
cations and weights. We use the average measures of “the number of I/O” (a
number of visited nodes) and “CPU time” (query processing time) as the per-
formance metrics. Table 3 shows parameters and values used in our experiments
(the values in bold are the default values).

5.2 Experimental Result

To evaluate the performance of algorithms for the distance-based top-k queries,
we vary two query parameters, k and «, as well as the dimension of non-spatial
attributes, d, with 2 types of synthetic datasets for non-spatial attributes.

Uniform Non-spatial Attribute

Varying k. With k increasing, the search space increases. Figures 4a and 4d show
the result in the uniform non-spatial attribute. We can see that SKY R-tree and
S2KY R-tree outperform Max aR-tree for all values of k in terms of both the num-
ber of I/O and CPU time. From this result, we validate our idea of using sky-
line points to efficiently prune the search space. SKY R-tree works better than
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Table 3. Setting

Parameter Value
Requested # of object £ 1, 5, 10, 20, 50, 100
Alpha 0, 0.2, 0.3, 0.4, ,0.6, 0.8, 1.0
Dimension d 1,2,3,4
Attribute set uniform, anti-correlated

S2KY R-tree in terms of the number of I/O for a small value of k, while S2KY
R-tree works better for a large value of k. The MBR of an index node in SKY
R-tree is smaller than that in S2KY R-tree, and thus the search space becomes
smaller. In S2KY R-tree, as k increases, the probability for the top-k objects to
have the same ancestor nodes increases, resulting in decrease in the number of 1/O.
Moreover, S2KY R-tree significantly outperforms SKY R-tree in terms of CPU
time. Since S2KY R-tree likely finds objects with good score at one traversal, the
number of nodes and objects in MINHEAP decreases, resulting in decrease of
CPU time.

Varying «. Parameter « in Eq. (1) represents importance of location for a user.
With « increasing, the location proximity contributes more than the non-spatial
attributes to the ranking score. Figures 4b and 4e show the result in the uniform
non-spatial attribute. When « is small, the performance S2KY R-tree is better
than the other two methods. When « is large, the performance is worse than the
others because S2KY R-tree takes into account the similarity measure of non-
spatial attributes. In SKY R-tree and Max aR-tree, although the search space
can be pruned by non-spatial attributes, the MBR of each node likely increases.
Hence, with « increases, the number of I/O gradually increases. SKY R-tree
outperforms Max aR-tree for all values of a because SKY R-tree can prune the
search space more efficiently than Max aR-tree.

Varying d. With the number of dimensions increasing, the diversity of
non-spatial attributes increases. Due to the curse of dimensionality, it becomes
difficult to prune the search space by non-spatial attributes. Figures 4c and
4f show the result in the uniform non-spatial attribute. Our proposal outper-
forms Max aR-tree for all values of d, except for 1. Note that Max aR-tree works
better than our proposal in the one dimension space because default setting for
the number of skyline points is 5, but there is only one skyline point in one
dimensional space. As a result, our setting wastes some redundant information
in this case. With d increasing, a similarity of non-spatial attributes efficiently
works, resulting in increase in the performance of S2KY R-tree more than SKY
R-tree.
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Fig. 4. Results in uniform non-spatial attribute

Anti-correlated Attribute

Varying k. Figures 5a and 5d show the result with the anti-correlated non-
spatial attributes. The performance in S2KY R-tree does not change much com-
pared with the uniform attribute set. On the other hand, SKY R-tree and Max
aR-tree on this dataset work less efficiently than the uniform attribute set. In
the anti-correlated set, SKY R-tree and Max aR-tree cannot efficiently prune the
search space upon the non-spatial attributes, while S2KY R-tree keeps high effi-
ciency by taking into account the similarity of non-spatial attributes. Specially,
in Max aR-tree, almost all nodes record the non-spatial attributes near the best
one (i.e., non-spatial attributes of each dimension are almost zero), and thus
the performance is significantly worse. From this result, we can see that S2KY
R-tree is robust for any non-spatial attributes by considering the similarity of
non-spatial attributes.

Varying «. Figures 5b and 5e show the result with anti-correlated non-spatial
attribute. The trend of results in our proposal is similar to Figure 4b. On the
other hand, when « is small, Max aR-tree works worse because pruning the
search space by non-spatial attribute does not work well in the anti-correlated
attributes.

Varying d. Figures 5¢ and 5f show the result in the anti-correlated non-spatial
attribute. S2KY R-tree outperforms the other methods for all values of d except
for 1. The variation of non-spatial attributes in anti-correlated is smaller than
the uniform, and thus the similarity of non-spatial attributes works better.
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Fig. 5. Results in anti-correlated non-spatial attribute

6 Related Work

Top-k Query. Conventional top-k query processing has been extensively studied
[6]. Fagin et al. [4] propose a class of algorithms known as threshold algorithms
for computing the top-k query from multiple lists. Threshold algorithm accesses
tuples from the database in a certain order, and maintains an upper bound as
the maximum score for the unseen objects. If the upper bound is lower than the
score of top-k objects, the algorithm terminates. Various threshold algorithms
[1] have been proposed to improve some of their limitation and to study in other
application areas. Tao et al. [9] propose a branch-and-bound algorithm for top-
k queries. This branch-and-bound algorithm, based on R-tree [5], visits nodes
which record the potential object with the best score.

These algorithms can be used for processing distance-based top-k queries, but
they are inefficient. For example, by finding the top-1 object based on non-spatial
attributes, and then adding the score of location proximity, we can repeatedly
find the top-k objects. However, these algorithms probably search redundant
objects whose locations are further from a query points.

Nearest Neighbor Query. k nearest neighbor (kNN) query processing in spa-
tial databases, which retrieves the k objects closest to a query points, is also
related to our work. kNN query processing proposed by Roussopoulos et al. [8]
maintains potential nearest neighbors in a queue based on R-tree [5], and tra-
verses the tree to find the best objects. For example, it finds the nearest neighbor,
and then adds the score of non-spatial attributes. However, kNN queries pro-
cessing based on R-tree are worse than a MAX aR-tree approach.
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7 Conclusion

In this paper, we propose a new index structure for distance-based top-k query.
The index structure, named SKY R-tree, incorporates R-tree and skyline to
prune the search space by exploring both the spatial proximity and non-spatial
attributes. Accordingly, we propose an algorithm for processing distance-based
top-k queries. The index structure and processing algorithm, forming a new
framework, is very efficient to retrieve the best objects. Moreover, we consider the
similarity measure of non-spatial attributes of objects in its construction in a new
index, named S2KY R-tree. Through extensive experimentation, we demonstrate
that our proposal efficiently processes distance-based top-k queries in terms of
both the I/O costs and CPU time. The difference between performance of SKY
R-tree and S2KY R-tree depends on the situations under different importance
of location proximity and the distribution of locations of objects and non-spatial
attributes.

This work can be extended in several directions for future work. First, it
would cooperate with keyword search, e.g., the “Japanese” restaurant close to
a query point with high rating. Second, continuous distance-based top-k query
processing for mobile users would be interesting. Third, in this paper we calculate
the distance between objects and a query point in Euclidian distance, while a
road-based distance is also an important challenge.
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