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Abstract. In recent years, complex event processing has attracted con-
siderable interest in research and industry.Pattern matching is used to
find complex events in data streams. In probabilistic data streams, how-
ever, the system may find multiple matches in a given time interval. This
may result in inappropriate matches, because multiple matches may cor-
respond to a single event. We therefore propose grouping methods of
matches for probabilistic data streams, and call such merged matches
a group. We describe the definitions and generation methods of groups,
propose an efficient approach for calculating an occurrence probability
of a group, and compare the proposed approach with a näıve one by
experiment. The results demonstrate the properties and effectiveness of
the proposed method.

Keywords: Complex event processing · Pattern matching · Grouping ·
Probabilistic data streams

1 Introduction

In recent years, complex event processing (CEP) has been a topic of great interest
in research and industry. Pattern matching is of particular interest because of
its usefulness [2–4,10–14,16,19]. The majority of the existing research, however,
does not consider data source uncertainty. Data sources such as sensor devices are
uncertain because they may contain measurement error, communication error, or
both. A data stream has a probabilistic nature when the data source is uncertain.
Figure 1 shows an example of a stream that corresponds to an uncertain data
source. We call such a data stream a probabilistic data stream. In our research,
we investigate pattern matching in probabilistic data streams.

However, pattern matching in probabilistic data streams is difficult because
the system may find multiple matches in a given interval. For example, Fig. 2
shows results of pattern matching over the stream in Fig. 1 when the pat-
tern 〈a b+c〉 is given. Methods presented in the existing research remove such
matches with low probability because such matches are not important [9]. Such
an approach, however, may not be appropriate because every match implies
the possibility that the pattern occurred in the interval. We therefore propose
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time 1 2 3 4 5 6

a 1.0 0.3 0.1 0.1 0 0

event b 0 0.7 0.8 0.7 0.9 0

c 0 0 0.1 0.2 0.1 1.0

Fig. 1. A probabilistic data stream

match
time

probability
1 2 3 4 5 6

m1 a b c 0.07

m2 a b b b b c 0.3528

m3 a b b c 0.0168

m4 a b c 0.09

Fig. 2. Pattern matching result for pattern 〈a b+c〉

grouping methods for matches in a given interval. We call such a set of matches a
group. For example, we merge all matches in Fig. 1 into one group and calculate
the probability that the pattern 〈a b+c〉 exists in the time interval [1, 6].

The remainder of the paper is organized as follows. In Sect. 2, we describe
the background of our research. Section 3 describes the definition of a group and
Sect. 4 explains how to generate groups. In Sect. 5, we introduce an effective app-
roach for calculating probabilities of groups. Section 6 describes the settings and
results of experiments. Section 7 introduces related work and Sect. 8 concludes
the paper.

2 Preliminaries

Assumptions. We make two assumptions here:

1. Each event occurs every unit time and arrives in a data stream engine in
order.

2. A probability of an event at time ti is independent of that of an event at
time tj (i �= j).

For example, in the probabilistic data stream in Fig. 1, probability P (a2 ∧b3) =
P (a2)× P (b3) = 0.24 according to the second assumption.

Probability Space. We first define a probabilistic event as an entry of a prob-
abilistic data stream.

Definition 1. A probabilistic event et is an event with its probability. The prob-
ability that the value of et is α is denoted as P (et = α). For a discrete domain
of events V , the properties

∀α ∈ V, 0 ≤ P (et = α) ≤ 1
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and ∑
α∈V

P (et = α) = 1

hold.

For example, in Fig. 1 the occurrence probability of e3 is
∑

α∈{a,b,c} P (e3 = α) =
P (a3) + P (b3) + P (c3) = 1. We may use P (αt) as a shorthand of P (et = α).

Next, we define a probabilistic data stream in our research.

Definition 2. A probabilistic data stream PDS = 〈e1, e2, ..., et, ...〉 is a sequence
of probabilistic events.

For instance, the probabilistic data stream in Fig. 1 is represented by PDS =
〈e1, e2, e3, e4, e5, e6〉.

Then, we define the notion of sequence s[ti,tj ].

Definition 3. s[ti,tj ] = 〈αti
, αti+1, ..., αtj

〉 is a sequence of events from ti to tj.
A probability of s[ti,tj ] is defined as the product of the probabilities of the events
in s[ti,tj ]: P (s[ti,tj ]) =

∏tj

k=ti
P (ek = αk).

For example, one of the sequences in Fig. 1 is s[1,3] = 〈a1, a2, b3〉 and the proba-
bility of s[1,3] is P (s[1,3]) = P (a1)× P (a2)× P (b3) = 0.24.

If a window is specified as w = [ti, tj ], we denote s[ti,tj ] as sw. In addi-
tion, we represent the universal set of sw as Sw. For instance, Fig. 1 is a
data stream for the window w = [1, 6] and examples of the elements of Sw

are 〈a1, a2, a3, a4, a5, a6〉 and 〈a1, a2, a3, a4, a5, b6〉.
Next, we define a probability space using Sw.

Definition 4. Given a window w, (2Sw , P ) is the probability space for a proba-
bilistic data stream, where 2Sw is the power set of Sw. P gives a probability P (x)
to each element x ∈ 2Sw by summing the probabilities of all sequences in x such
as P (x) =

∑
sw∈x P (sw).

Query Pattern. We use a regular expression for representing a query pattern.
For example, we use 〈a b c〉 if we want to find matches that include a, b, and c
with this order: events a, b, and c must be contiguous in the stream. In a query
pattern, we can use the Kleene plus (+) as an option for the regular expression.
For instance, for the pattern 〈a b+c〉, we accept matches such as 〈at bt+1 ct+2〉
and 〈at bt+1 bt+2 ct+3〉.

Matches. A match is an instance of a pattern found in the target probabilistic
stream. For example, in Fig. 1 one of the matches for the pattern 〈a b c〉 is
〈a1 b2 c3〉. We define the notion of a match and its probability in a consistent
manner with the probability space.

Definition 5. A match m is a set of sequences that include the pattern
occurrence as a subsequence. A probability of match m is given as P (m) =∑

sw∈m P (sw).
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� � � �

� � �

(b) stacks for keeping events(a) NFA for the pattern 

Fig. 3. An NFA and stacks for generating matches in the stream in Fig. 1

For instance, we consider the probability of m1 = 〈a1 b2 c3〉 in Fig. 2. Suppose
the window w = [1, 4] is specified for the stream in Fig. 1. In this case, Sw

holds sequences such as 〈a1, a2, a3, a4〉 and 〈a1, a2, a3, b4〉. In Sw, there are three
sequences that include m1:

s1 = 〈a1, b2, c3, a4〉
s2 = 〈a1, b2, c3, b4〉
s3 = 〈a1, b2, c3, c4〉

Thus, the probability of m1 is P (m1) = P (s1) + P (s2) + P (s3) = 0.07.
We follow the NFA-based approach to generate matches [1]. This approach

represents a pattern as a non-deterministic finite automaton (NFA) and manages
events and matches using stacks. For example, Fig. 3 shows an NFA and stacks
for generating matches over the probabilistic data stream in Fig. 1 for the pattern
〈a b+c〉. The stacks correspond to the respective states of the NFA and store
each event that has an occurrence probability. In this example, stack 1 stores
events {a1, a2, a3, a4} and does not contain {a5, a6} because their probabilities
are 0. We connect the events using pointers according to the edges of the NFA.
We can generate matches by tracing the pointers from the events in the stack of
the final state. For example, 〈a1 b2 b3 c4〉 and 〈a2 b3 c4〉 are generated by tracing
the pointers from c4. In the following, we call a candidate of matches under
construction a run.

3 Grouping Policies

In our framework, a group is defined by a grouping policy. In this section, we
introduce two policies. Intuitively, it is natural to merge matches in a given time
interval into a group. Thus, we consider the time intervals of matches to decide
whether to merge them. The time interval of a match is given by its start and
end times. For example, the time interval of m1 in Fig. 2 is [1, 3].

For considering grouping policies, we use the complete link method and
the single link method in hierarchical clustering [6]. The complete link method
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time

Complete overlap

Single overlap

Match

Fig. 4. Group generation based on complete overlap and single overlap

requires that every document is similar to (linked to) all other documents in the
same cluster. In contrast, the single link method requires that every document
is similar to at least one other document in the same cluster. For our context,
we propose complete overlap and single overlap, inspired by the two methods,
and give their definitions below. In the following definition, ts overlap(m,m′) is
a predicate that is true when the time interval of m overlaps with that of m′.

Definition 6. A set of matches M has a property of complete overlap when M
satisfies the following condition:

∀m,m′ ∈ M, ts overlap(m,m′). (1)

Definition 7. A set of matches M has a property of single overlap when M
satisfies the following condition:

∀m ∈M,∃m′ ∈ M,m �= m′ ∧ ts overlap(m,m′). (2)

Now, we define a group using overlaps:

Definition 8. A group g is a set of matches. g should have a property of com-
plete overlap or single overlap and g should not be a subset of other groups. A
group is represented as a tuple g = (ts, te, p) that contains the starting time, the
end time, and the corresponding probability.

Complete overlap ensures that all matches in a group overlap with each other.
In contrast, single overlap ensures that each match overlaps with at least one
other match in the same group. Figure 4 shows an example of group generation
using complete overlap and single overlap. For the case of complete overlap, three
groups g1 = (t1, t3, p1), g2 = (t2, t4, p2), and g3 = (t3, t5, p3) are generated. In
contrast, one group g4 = (t1, t5, p4) is generated for the case of single overlap.

The above example shows a tendency of group generation based on complete
overlap and single overlap. In this case, complete overlap may generate more use-
ful groups in general, because single overlap excessively merges matches. Suppose
the first and last matches have high occurrence probability in Fig. 4. We should
distinguish among them in such a case, but single overlap merges them into g4.
On the other hand, complete overlap can distinguish among them as g1 and g3.
Single overlap is, however, more useful than complete overlap in some ways. For
example, it may be appropriate to merge all the matches in Fig. 2 but com-
plete overlap cannot merge them. In contrast, single overlap can merge all the
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matches into a group. Therefore, we should selectively use complete or single
overlap according to the usage scenario.

Next we define the probability of a group. A group is a set of matches according
to Definition 8. Moreover, a match is a set of sequences according to Definition 5.
A group is therefore also a set of sequences, so we can define the probability of a
group as follows:

Definition 9. A probability of a group g is given as

P (g) = P

( ⋃
mi∈g

mi

)
=

∑
sw∈⋃mi∈g mi

P (sw). (3)

In the following, we use the term group probability for simplicity.

4 Algorithms for Generating Groups

In this section, we explain how to generate groups for each type of overlap.
Moreover, we introduce the use of a probability threshold for efficient group
generation.

4.1 The Case of Complete Overlap

As described in Definition 6, complete overlap requires that all matches overlap
with each other. Thus, small groups such as g1, g2, and g3 in Fig. 4 are generated.
We can identify such groups when a group finds a match for the first time. For
example, we consider the groups g1 = {m1,m2,m3}, and g2 = {m2,m3,m4}
in Fig. 2. g1 does not have m4 because m4 does not overlap with m1. In other
words, all matches in g1 are fixed when we detect m1 at time 3. In more detail,
g1 has 〈a1 b2 c3〉, 〈a1 b2 b3〉, and 〈a2 b3〉 at time 3, and any runs and matches are
not added to g1 after time 3 due to the condition of complete overlap. Thus, we
can distinguish g1 and the other groups such as g2 at time 3.

Figure 5 shows the algorithm for generating groups based on complete over-
lap. Note that we omit explanation of lines 10 and 15 in this section; they are
covered in Sect. 5. Suppose the pattern 〈a b c〉 is given for the stream in Fig. 1.
First, we initialize R and G (lines 2 and 3). R is a temporal set of runs and
G holds the candidates of groups. We process the events in order (line 4) and
add new runs to R to generate candidates. At time 1, a new run r1 = 〈a1〉 is
generated and added to R (line 5). The conditions at lines 6, 11, and 14 are not
satisfied in this iteration. Then R becomes {r1 = 〈a1 b2〉, r2 = 〈a2〉} at time 2
and {m1 = 〈a1 b2 c3〉, r2 = 〈a2 b3〉, r3 = 〈a3〉} at time 3 at line 5. As we find a
match m1, we generate a copy of R as g1 and add g1 to G (line 7). Hereafter,
we update only {r2, r3}, the remaining runs of g1 (line 5). Note that we remove
m1 = 〈a1 b2 c3〉 from R (line 8) because R cannot get a new run like r4 = 〈a4〉
for the condition of complete overlap. We output groups and remove them from
G when they have no runs (lines 16 and 17). In this example, g1 is output at



98 K. Sugiura et al.

1: procedure GenerateGroupsForCompleteOverlap(PDS)
2: R = ∅ // set of runs
3: G = ∅ // candidates of groups
4: for each et ∈ PDS do
5: update runs and generate a new run 〈et〉 then add it to R
6: if R has a match then
7: generate a copy gcopy of R and add gcopy to G
8: remove matches from R
9: end if

10: update the group probability of R using (5)
11: if R has runs that are out of the window next time then
12: remove such runs from R
13: end if
14: for each g ∈ G do
15: update the group probability of g using (5)
16: if g does not have a run then
17: output g and remove it from G
18: else if g has runs or matches that are out of the window next time then
19: output g
20: remove such runs and matches from g
21: end if
22: end for
23: end for
24: end procedure

Fig. 5. Group generation based on complete overlap

time 5 because g1 = {〈a1 b2 c3〉, 〈a2 b3 c4〉, 〈a3 b4 c5〉} does not have a run. This
process continues until the data stream terminates. Note that lines 11 to 13 and
lines 18 to 21 are for window processing. We remove runs and matches that are
out of the window next time (lines 12 and 20). When a group has matches, we
output it (line 19).

4.2 The Case of Single Overlap

In a group based on single overlap, each match should overlap with at least
one of the other matches in the same group. The group formation process is not
simple, as described below. Consider the situation where the match and the runs
in Fig. 6 are generated for the pattern 〈a b+c〉.

In this case, we can formulate the groups g1 = {m1, r1}, g2 = {r2}, and
g3 = {r3}. However, we cannot yet merge g1 and g2 because r2 overlaps with
only r1, and r2 may not overlap with g1 if r1 is rejected in the future. Similarly
we cannot merge g1 and g3, nor g2 and g3, because they overlap with the runs
only. Then, we merge groups into one group when an overlap between them is
confirmed. For example, when r2 becomes m2 = 〈a4 b5 c6〉 at time 6, we can
merge g2 and g3 into g = {m2, r3}. Note that we can merge only the groups
generated after g2 because g2 overlaps with only the run in g1. If r2 becomes
m3 = 〈a1 b2 b3 b4 b5 c6〉 at time 6, we can merge all the groups into one group.
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match / run
time

1 2 3 4 5

m1 a b c

r1 a b b b b

r2 a b

r3 a

Fig. 6. A match and runs for the pattern 〈a b+c〉

Figure 7 shows the algorithm for generating groups based on single overlap.
Suppose that the pattern 〈a b c〉 is given for the stream in Fig. 1. A new run r1 =
〈a1〉 is generated at time 1 (line 4). As G is an empty set, we do not execute lines
5 to 19 in this iteration. At line 21, we generate a new group g1 = {r1} and add it
to G because r1 is not added to any group at time 1. At time 2, a new group g2 =
{r2 = 〈a2〉} is generated at line 21 because g1 = {r1 = 〈a1 b2〉} does not have
matches. g2 is merged into g1 at time 3 because g1 gets the match m1 = 〈a1 b2 c3〉
(lines 6 to 11). We can merge g1 and g2 because g1 = {〈a1 b2 c3〉} and g2 =

1: procedure GenerateGroupsForSingleOverlap(PDS)
2: G = ∅ // candidates of groups
3: for each et ∈ PDS do
4: update runs and generate a new run rnew = 〈et〉
5: for each gi ∈ G do // subscript means the generation order
6: if gi found a match this time then
7: for each gj ∈ G (j > i) do
8: gi = gi ∪ gj and remove gj from G
9: end for

10: gi = gi ∪ {rnew}
11: end if
12: update the group probability of gi using (5)
13: if gi does not have a run then
14: output gi and remove it from G
15: else if gi has runs or matches that are out of the window next time then
16: output gi

17: remove such runs and matches from gi

18: end if
19: end for
20: if rnew is not added to any group then
21: generate a new group gnew = {rnew} and add it to G
22: update the group probability of gnew using (5)
23: end if
24: end for
25: end procedure

Fig. 7. Group generation based on single overlap
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{〈a2 b3〉} certainly overlaps. We output groups that have no runs and remove
them (line 14). In this example, g1 = {〈a1 b2 c3〉, 〈a2 b3 c4〉, 〈a3 b4 c5〉 〈a4 b5 c6〉}
is output at time 6. This process continues until the data stream terminates.

4.3 Use of Threshold of Match Probability

We consider the threshold of a match probability to generate groups efficiently.
The runtime of group generation is large when we generate all matches. Thus,
we remove matches whose probabilities are lower than the specified threshold.
We can remove runs and matches at line 5 in Fig. 5 and line 4 in Fig. 7.

For instance, suppose the pattern 〈a b+c〉 is given and the match threshold
is θ = 0.1 for single overlap matching for the stream in Fig. 1. Ten matches are
found from Fig. 1, but matches satisfying θ are 〈a1 b2 b3 c4〉, 〈a1 b2 b3 b4 b5 c6〉,
and 〈a2 b3 b4 b5 c6〉. Therefore, we construct a group from these three matches.

Although we prune matches with low probabilities, we do not ignore those
probabilities. That is, we remove matches such as 〈a1 b2 c3〉 and 〈a1 b2 b3 b4 c5〉
in our example, but we compute the group probability according to (3). We
explain the details in the next section.

5 Efficient Calculation of Group Probability

Using (3), we can calculate a group probability by summing probabilities of all
sequences in the group. However, such an approach is not efficient because the
number of sequences increases with order O(|V |w). Therefore, we propose an
efficient method using a transducer.

A finite state transducer is a finite state automaton which produces output as
well as reading input. Figure 8 shows an example of a transducer for the pattern
〈a b+c〉. This transducer is generated to accept all sequences that contain the
pattern as a subsequence. Thus, a probability of arriving at the final state is
the sum of probabilities of the sequences. That is, the probability of arriving at
the final state becomes the group probability.

We can generate the transducer by adding edges to the NFA in Fig. 3. The
rules for adding edges are as follows:

� � � �

� : Arbitrary input

Fig. 8. Transducer for the pattern 〈a b+c〉
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1. We add an edge from the final state to itself with arbitrary inputs.
2. If the state does not have edges with the first event of the pattern, we add

an edge that shifts the state to state 1 with the first event.
3. We add edges that shift each state to the initial state with other inputs.

For example, we add an edge with the label “∗ : P (∗)” to the final state according
to rule 1. This edge enables the transducer to keep accepted sequences in the final
state. As the first event of 〈a b+c〉 is a, we add edges with the label “a : P (a)”
to state 1 and 2 according to rule 2. We add those edges to accept sequences
that contain a part of the pattern such as 〈a1, b2, a3, b4, c5〉. According to rule
3, we add edges with the labels “a : P (a)”, “

(
a|b
)

: P
((

a|b
))

”, and “
(
a|b|c

)
:

P
((

a|b|c
))

.” Those edges enable rejected sequences to start again from the
initial state.

In the following, we explain how to use a transducer for single and complete
overlaps.

5.1 The Case of Single Overlap

A group g = (ts, te, p) based on single overlap has all matches in the interval
[ts, te]. Figure 4 shows an example where g4 consists of all the matches in [t1, t5].
Therefore, in single overlap, a group probability is equal to the sum of the proba-
bilities of all sequences that contain the pattern as a subsequence in the interval
[ts, te]. As described above, such a probability is the probability of arriving at
the final state of the transducer. Thus, we can compute a group probability using
a transducer instead of computing the probabilities of all sequences.

We use a transition matrix of a transducer to calculate the probability of
arriving at the final state. Equation (4) is an example of the transition matrix
of the transducer in Fig. 8:

Tti−1,ti
=

⎡
⎢⎢⎢⎢⎣

P (ati) P (ati) 0 0
P
(
a|bti

)
P (ati) P (bti) 0

P
(
a|b|cti

)
P (ati) P (bti) P (cti)

0 0 0 1

⎤
⎥⎥⎥⎥⎦ . (4)

Each row corresponds to the previous states and each column corresponds to
the present states. For example, Tti−1,ti

(0, 1) = P (ati) means a probability that
shifts state 0 to state 1 is P (ati). Let St be a vector that contains state proba-
bilities. Then we can update the probabilities as follows:

Stti
= Stti−1 × Tti−1,ti

. (5)

In other words, we can calculate the probability of the final state by updating
the vector at each time. This process corresponds to lines 12 and 22 in Fig. 7.
For example, Fig. 9 shows the change of vector St for computing the group
probability of g = (1, 6, p) in Fig. 1. Note that g is the set of all matches found
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time init 1 2 3 4 5 6

state

St[0] 1.0 0 0 0.03 0.047 0.0563 0.0563

St[1] 0 1.0 0.3 0.10 0.093 0 0

St[2] 0 0 0.7 0.80 0.630 0.6507 0

St[3] 0 0 0 0.07 0.230 0.2930 0.9437

Fig. 9. Updating state vector St

(a) Transducer for a group without matches (b) Transducer for a group with matches

� � � �� � � �

Fig. 10. Additional transducers to calculate a group probability in complete overlap

in Fig. 1. When a group is generated, we initialize the vector such that Stinit[0] =
1.0 and the others are 0. We update the vector using (5) at each time until the
group is output. In this case, the group probability is 0.9437 because we output
the group at time 6.

This approach can compute a group probability even if we prune matches
using a match threshold. As we use a transducer and its transition matrix, we can
compute the sum of probabilities of all sequences that contain matches regardless
of whether matches are generated or not. Let us continue the above example with
g = (1, 6, p). Suppose the matches such as m1 in Fig. 2 are pruned by a match
threshold. In such a case, however, we can compute the same transition matrix
at each time using (4). For example, T1,2 does not change regardless of whether
the matches are generated or not. As we use the transition matrix for calculating
the group probability, we can compute the same group probability even if the
matches are pruned.

5.2 The Case of Complete Overlap

We cannot calculate a group probability using the former approach for complete
overlap.Recall Fig. 2,where two groups g1 = {m1,m2,m3} and g2 = {m2,m3,m4}
are generated. If we use the transducer in Fig. 8 to calculate the group probability
of g1, the calculated probability is not correct because it contains the probability
of m4. Similarly, the probability of g2 is also not correct because of m1.

Therefore, we use two additional transducers to solve the problem. Figure 10
shows the transducers for the pattern 〈a b+c〉. The transducer (a) accepts no
matches because it does not have edges that shift states to the final state. On
the other hand, the transducer (b) generates no runs because it does not have
edges that shift states to state 1. We use the transducer (a) while the group does
not have matches (line 10 in Fig. 5). The transducer (b) is used after the group
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finds matches (line 15 in Fig. 5). Note that we use the transducer in Fig. 8 only
once, when a group finds matches for the first time (line 15 in Fig. 5).

Let us continue the above example with g1 = {m1,m2,m3} and g2 = {m2,m3,
m4}. Let us denote the transition matrix of the transducer in Fig. 8 as T . Simi-
larly, we represent the transition matrices of transducers (a) and (b) in Fig. 10
as TA and TB, respectively. We consider the case of calculating the probability
of g1. The system uses TA before time 3 and T at time 3. TB is used after time
3 to avoid including the probability of m4. At t = 6, the vector St of g1 is as
follows:

St6 = Stinit × TA
init,1 × TA

1,2 × T2,3 × TB
3,4 × TB

4,5 × TB
5,6.

Similarly, for g2 we use TA before time 5 to avoid including the probability of
m1. Then T is used at time 5 and TB is used after time 5. Thus, St of g2 is as
follows:

St6 = Stinit × TA
init,1 × TA

1,2 × TA
2,3 × TA

3,4 × T4,5 × TB
5,6.

If the system uses a match threshold, our approach can compute group prob-
abilities as well as the case of single overlap. In the case of complete overlap, the
system decides whether to use the transducers according to the time tf that a
group gets matches for the first time. Thus, the system can compute the group
probability of g = (ts, te, p) only if it has a tuple (ts, tf , te). tf is easily deter-
mined in the process of group generation, because the system can recognize it at
line 6 in Fig. 5. Therefore, our approach can calculate correct group probabilities
for complete overlap.

6 Experiments

In this section, we analyze the performance of our approach. We constructed
a system that generates groups and computes group probabilities using the
described approach. The system is an extension of SASE+ [1], a Java-based
system for pattern matching queries in a non-uncertain data stream. We per-
formed all measurements on a computer with an Intel Core i7-2600 3.40 GHz
CPU, 4.0 GB main memory, and the Windows 7 Professional 64-bit operating
system. The system runs under Java Hotspot VM 1.5 with the JVM allocation
pool set to 1.5 GB.

The experiments are performed based on simulations. We generate a synthetic
probabilistic data stream and use it as an input stream. The generation process
is as follows. First, we generate a non-uncertain data stream 〈α1, α2, ..., α10000〉
with 10,000 events. Each event value αt is taken from the domain V = {a, b, c, d}.
The probability distribution for each event is set as follows. Consider the case
of α1 = a1. We randomly choose the occurrence probabilities of b1, c1, and d1
from the range [0, 0.1]. Then the probability of a1 is given as P (a1) = 1 −∑

α1∈{b1,c1,d1} P (α1). For t = 2, 3, ..., we follow the same procedure.
We evaluate the performance of the proposed method using throughput (the

number of events processed per second). In the experiments, we use the pattern
〈a b+c〉 and the parameters in Table 1. In the following, we represent the setting
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Table 1. Parameters in the experiments

Parameters Values

o: overlap type comp: complete overlap

sing: single overlap

θ: threshold of match probabilities {0, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1}
w: window size {5, 10, 15, 20, 25, 50}
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Fig. 11. Throughputs for different window sizes and thresholds

of the parameters as a tuple (o, θ, w). For example, (comp, 0.01, 50) means that
the system uses complete overlap, the match threshold is 0.01, and the window
size is 50.

6.1 Effect of Parameters

Figure 11(a) shows the throughputs for different window sizes. We show the
cases of only θ = 0 and 0.01 because the tendencies for larger thresholds are
similar to that of θ = 0.01. We can observe three properties. First, the through-
put decreases rapidly if we do not use a threshold (θ = 0). This is due to the
number of generated matches. When we use the pattern 〈a b+c〉, the number of
matches increases with order O(w2). Second, the throughput is independent of
the window size if we use a threshold, because most matches are pruned early
by the threshold. As described above, the number of matches increases rapidly,
but most matches do not have high probabilities. High throughput is achieved
because many matches are pruned before their generation. Furthermore, the
throughput of single overlap is larger than that of complete overlap due to the
number of generated groups. As shown in Fig. 4, complete overlap generates more
groups than single overlap. Thus, we need more computation time for complete
overlap.

We next study the effect of the threshold setting. Figure 11(b) shows the
throughputs for different thresholds. We show the case of only w = 50 because
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Table 2. Throughputs of the transducer-based approach and the naive approach for
different window sizes

w 5 10 15

(comp, 0.01, w)+proposed 79, 581 71, 356 71, 076

(comp, 0.01, w)+näıve 265 14 Out of memory

(sing, 0.01, w)+proposed 102, 389 97, 575 99, 865

(sing, 0.01, w)+näıve 267 14 Out of memory

the tendencies for other window sizes are similar to those of w = 50. The through-
put increases as the threshold becomes higher. This is also due to the number
of generated matches. As described above, the higher the threshold, the more
we can prune matches. Therefore, we can process each event rapidly if we use a
high threshold.

6.2 Effect of Transducer-Based Approach

In this experiment, we study the efficiency of our method with transducers.
We compare the proposed method with a näıve one. In the näıve method, we
generate all sequences in a window and summarize their probabilities according
to (3).

Table 2 shows the throughput measurements for different window sizes, where
“proposed” means that we use the proposed method to compute group proba-
bilities. Similarly, “näıve” means the use of the näıve method. Table 2 shows
that the throughput of the näıve method decreases exponentially. The näıve
method generates all sequences in a window, but their number increases with
order O(|V |w). Therefore, the näıve method cannot compute group probabilities
due to memory shortage for w = 15. On the other hand, the proposed method
can compute group probabilities regardless of the window size. The proposed
method uses (5) to compute group probabilities. The computational complexity
of (5) is O

(|p|2), where |p| is the length of pattern p. Note that the length of a
pattern means the number of events in the pattern (e.g., |〈a b+c〉| = 3). Thus,
the computation time of the proposed method is much smaller than that of the
näıve one.

7 Related Work

In the literature of non-uncertain data streams, many methods for pattern
matching are proposed [1–5,10–14,16–19]. The SASE project [1,5,17–19], pro-
poses an NFA-based approach for finding matches as described in Sect. 2. More-
over, they propose a method to efficiently process the Kleene closure [1,5]. We
have implemented our system by extending their CEP system SASE+ [1] and
their methods. Including the SASE project, however, all the methods do not
consider and process uncertain data streams.
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Some researchers have taken on pattern matching in uncertain data streams
[7–9,15]. The Lahar project [7,8,15] considers correlated probabilistic data
streams. In correlated streams, every event has a conditional probability as an
occurrence probability because an underlying Markov process is assumed. To
compute match probabilities, they use an NFA translated from a query. They
keep probabilities of the states and regard the probability of the final state as
the match probability. Their approach, however, merges only simultaneously
accepted matches. On the other hand, our approach considers a time interval
of matches and merges them according to complete overlap or single overlap.
Therefore, we can group matches more flexibly. We do not consider correlations
between events in this paper, but we will be able to extend our approach to
correlated streams.

[9] proposes a method to find top k matches in probabilistic streams. In [9],
probabilistic streams are generated by their system using an error model that
translates a non-uncertain event to a probabilistic event. Moreover, the system
computes probabilities for the top k matches using the error model, and can
merge them. Their approach, however, merges only matches that are among the
top k simultaneously accepted matches. On the other hand, we can merge all
probabilities in a group using transducers.

8 Conclusion

We proposed a grouping method of matches for probabilistic data streams. We
proposed complete overlap and single overlap and defined a group using them.
Then, we explained the two algorithms for generating groups. To compute a
group probability efficiently, we proposed an approach that uses transducers.
We evaluated the efficiency of our approach in simulation-based experiments.
Future work will include refinement of the grouping policy and method for group
generation, extension to correlated probabilistic data streams, support of other
options for the regular expression such as negation, and re-evaluation of our
approach using real data sets.
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15. Ré, C., Letchner, J., Balazinksa, M., Suciu, D.: Event queries on correlated prob-
abilistic streams. In: Proc. ACM SIGMOD, pp. 715–728 (2008)

16. Woods, L., Teubner, J., Alonso, G.: Complex event detection at wire speed with
FPGAs. Proc. VLDB Endow. 3(1–2), 660–669 (2010)

17. Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over
streams. In: Proc. ACM SIGMOD, pp. 407–418 (2006)

18. Zhang, H., Diao, Y., Immerman, N.: Recognizing patterns in streams with impre-
cise timestamps. Proc. VLDB Endow. 3(1–2), 244–255 (2010)

19. Zhang, H., Diao, Y., Immerman, N.: On complexity and optimization of expensive
queries in complex event processing. In: Proc. ACM SIGMOD, pp. 217–228 (2014)


