曖昧グラフにおける効率的なネット ワーク信頼性の近似計算

$佐 q 木 勇 1^1 藤 原 靖 宏^2 鬼塚 真^3$

ネットワーク信頼性は曖昧グラフにおいて与えられた節点間の 接続確率を評価する重要な指標のひとつである.ネットワーク信 頼性の計算は #P 完全問題であるため,近似解を計算する手法が 提案されている.本稿では、サンプリングに基づく新たな近似解 計算手法を提案する.提案アプローチは層化サンプリングを拡張 し、下限値と上限値を用いてサンプル数を削減する.これによ り近似計算の効率化と近似解の精度の向上を可能にする.下限 値と上限値を効率的に計算するために、二分決定図を拡張した S²BDDを開発する.提案アプローチは S²BDDを構築しながら、 動的計画法を用いて効率的なサンプリングも実現する.実データ を用いた実験により、提案アプローチが高精度を保ちながら、既 存のサンプリングに基づくアプローチより最大で 51.2 倍高速で あることを示す.

1 はじめに

世の中の理解と設計のためには、オブジェクト間の関係性をモ デル化し解析することが必要であり、実世界のオブジェクト間の 関係性はグラフによりモデル化することができる. グラフの解析 における基礎的なトピックとして、ネットワーク信頼性の計算が ある [2,15]. ネットワーク信頼性は枝に存在確率が付与されてい る曖昧グラフにおいて、与えられた複数の節点(ターミナルと呼 ぶ)が相互接続する確率である. 例えば、タンパク質相互反応は 気温や湿度等の状況により反応が常に行われるわけではないた め、曖昧グラフとしてモデル化することができる [1]. タンパク 質の機能の解明のために、分析者は複数のタンパク質間の関係の 強さをネットワーク信頼性を用いて評価している. その他にも、 通信ネットワーク [2] や都市計画 [5] などの応用にてネットワー ク信頼性は広く利用されている.

ネットワーク信頼性の計算は #P 完全問題として知られており, 計算コストは非常に大きい [15]. これは,可能グラフを列挙する ことが必要であることに起因する.可能グラフは,元々の曖昧グ ラフと同じ節点および枝のサブセットを持つグラフである.可能 グラフは存在確率をもち,枝の存在確率から計算される.ター ミナルが全て接続となる可能グラフの確率を足し合わせること で,ネットワーク信頼性を計算できる.図1は曖昧グラフと3つ の可能グラフの例を示し,黒の点はターミナルを表す.枝の存 在確率を 0.7 とする場合,それぞれの可能グラフは4つの枝が

存在(2つが非存在)するため,可能グラフの存在確率は0.0216 (0.7⁴ · (1 – 0.7)²)となる. 左と中央の可能グラフのみターミナル が接続しているため,これらの存在確率はネットワーク信頼性に 加算される.

本稿では,ネットワーク信頼性をサンプリング技術を用いて近 似計算する.問題定義は以下となる.

問題定義 (ネットワーク信頼性の近似計算): 曖昧グラフ G, ターミナル集合 T,およびサンプル数 sが与えられたとき,ネットワーク信頼性の近似値 $\hat{R}[G,T]$ を効率的に計算する.

サンプリングの計算コストはサンプル数の増加に従い大きくな る.本研究では,近似精度を損なわずにサンプル数を削減させ, 効率的な計算を行う.研究課題は,(1)どのように精度を理論的 に保証しながらサンプル数の削減させるか,および(2)どのよう に理論的な結果を効率的に実現するかである.まず,最初の課題 においては,層化サンプリング[14]を拡張する.層化サンプリ ングは予測値の下限値と上限値を用いることにより予測値の精度 を向上させることが可能であり,近似精度を損なわずにサンプル 数を削減可能なことを証明する.

精度を保ちつつサンプル数を削減できることを理論的な結果に より保証することができるが, ネットワーク信頼性の効率的な計 算に用いるには二つの課題ある.一つ目の課題は,効率的なネッ トワーク信頼性近似計算のために、ネットワーク信頼性の下限値 と上限値を効率的に求めることが必要がある.二つ目は、精度の 保証のために、下限値と上限値の計算に用いた可能グラフをサ ンプリング対象としてはいけないことである.これらを達成す る効果的な方法は自明ではない.そこで,二分決定図を拡張し た scalable and sampling BDD (S²BDD) を開発する. S²BDD は ターミナルが接続または非接続となる可能グラフを優先的に探 索することにより、下限値と上限値を効果的に求めることができ る.また提案アプローチでは、S²BDDを構築しながら、動的計 画法を実施し、効率的に可能グラフをサンプリングする. このサ ンプリングは、下限値および上限値の計算に用いられた可能グラ フをサンプリングすることを避けることができる。さらに、提案 アプローチは、曖昧グラフのサイズが減少することにより、さら に効率化可能である.そこで2枝連結グラフを用いた拡張技術を 提案する. 拡張技術は、ネットワーク信頼性を損なうことなく、 不必要な部分グラフの枝刈り, グラフの分割, およびより小さい グラフへの変換を行う.実データを用いた評価実験を行い,提案 アプローチは既存のサンプリングに基づくアプローチより最大 51.2 倍高速かつ高精度であること示す.

本稿の構成は次の通りである.まず,2にて事前知識について

¹ 正会員 大阪大学大学院情報科学研究科

sasaki@ist.osaka-u.ac.jp

² 正会員 NTT コミュニケーション科学基礎研究所

yasuhiro.fujiwara.kh@hco.ntt.co.jp ³正会員 大阪大学大学院情報科学研究科

onizuka@ist.osaka-u.ac.jp

説明する.3にて提案アプローチ,4にて拡張手法を説明する.5 にて提案アプローチのアルゴリズムを述べる.6にて実験結果を 示し,7にて本稿をまとめる.

2 事前知識

本章では,事前知識として,曖昧グラフ,ネットワーク信頼性, 二分決定図,およびサンプリングについて説明する.

2.1 曖昧グラフ

連結かつ無向な曖昧グラフを $G = (\mathbb{V}, \mathbb{E}, p)$ と定義する. \mathbb{V} は 節点集合, $\mathbb{E} \subseteq \mathbb{V} \times \mathbb{V}$ は, 曖昧枝の集合,および $p : \mathbb{E} \to (0,1]$ は, 曖昧枝 $e \in \mathbb{E}$ の存在確率 p(e) を決定する関数である. 節点 vと v' 間の枝 $e \in \mathbb{E}$ を e = (v, v') と定義する. 曖昧枝 e の状態は, 確率 p(e) で存在または確率 1 - p(e) で非存在である. 曖昧枝の 存在確率は,他の枝の存在確率と独立に計算されると想定する.

可能グラフ $G_p = (\mathbb{V}, \mathbb{E}_p)$ は、曖昧グラフGの全節点と枝のサ ブセットから成る.枝には存在確率は無く、 $\mathbb{E}\setminus\mathbb{E}_p$ は非存在枝で ある.可能グラフは存在確率を $Pr[G_p]$ をもち、以下の式で計算 される.

$$Pr[G_p] = \prod_{e \in \mathbb{E}_p} p(e) \cdot \prod_{e \in \mathbb{E} \setminus \mathbb{E}_p} (1 - p(e)).$$
(1)

曖昧グラフ *G* の可能グラフの数は,それぞれの枝が存在と非存 在の二つの状態を取りうるため,2^{|E|}である.*G* の全ての可能グ ラフの集合を W^G と定義する.

中間グラフ $G_{\mathbb{E}}(\mathbb{E}_3, \mathbb{E}_n)$ は,存在枝集合 \mathbb{E}_3 ,非存在枝集合 \mathbb{E}_n , および曖昧枝の集合 $\mathbb{E} \setminus (\mathbb{E}_3 \cup \mathbb{E}_n)$ から構成される曖昧グラフであ る.中間グラフの存在確率 $Pr[G_{\mathbb{E}}(\mathbb{E}_3, \mathbb{E}_n)]$ は以下の式で計算さ れる.

$$Pr[\mathcal{G}_{\mathbb{E}}(\mathbb{E}_{\exists},\mathbb{E}_{\neg})] = \prod_{e \in \mathbb{E}_{\neg}} p(e) \cdot \prod_{e \in \mathbb{E}_{\neg}} (1 - p(e)).$$
(2)

簡単化のため, $Pr[G_{\mathbb{E}}(\mathbb{E}_3,\mathbb{E}_n)]$ の代わりに $Pr[G_{\mathbb{E}}]$ を使用する. 中間グラフ $G_{\mathbb{E}}(\mathbb{E}_3,\mathbb{E}_n)$ の可能グラフの数は、 $2^{|\mathbb{E} \setminus |(\mathbb{E}_3 \cup \mathbb{E}_n)|}$ である. $G_{\mathbb{E}}$ の全ての可能グラフの集合を $\mathbb{W}^{G_{\mathbb{E}}}$ と定義する.中間グラフ において、存在枝を用いて節点間に経路がある場合、節点は接続 していると呼び、存在枝と曖昧枝を用いて経路が無い場合、節点 は非接続していると呼ぶ.ここで、曖昧枝を用いて節点に経路が ある場合、節点が接続か非接続はあきらかではない.

2.2 ネットワーク信頼性

ネットワーク信頼性は、全てのターミナルが接続となっている 可能グラフの確率を全て足し合わせることで計算できる.ネット ワーク信頼性の定義は以下である.

Definition 1 (ネットワーク信頼性) 任意の k 個のターミナル集 合 T と曖昧グラフ G が与えられたとき, ネットワーク信頼性 R[G,T] は下記の式で計算される.

$$R[\mathcal{G},\mathbb{T}] = \sum_{G_p \in \mathbb{W}^{\mathcal{G}}} I(G_p,\mathbb{T}) \cdot Pr[G_p],$$
(3)

 G_p は可能グラフを示し, $I(G_p, \mathbb{T})$ は G_p において全てのターミナルが接続なっている場合に 1 を返し, その他の場合 0 を返す関数を示す.

 $\hat{R}[G,T]$ をネットワーク信頼性の近似解と定義する. 簡単化の ため, $R \ge \hat{R} \ge R[G,T] \ge \hat{R}[G,T]$ の代わりにそれぞれ用いる. ターミナル数が k であるネットワーク信頼性は k ターミナル信 頼性と呼ばれ,最も一般的なネットワーク信頼性である [6]. kが 2 の場合でも,ネットワーク信頼性は **#P** 完全問題である [15].

二分決定図 [6] とサンプリング [7] がネットワーク信頼性計算 のための主要な技術である.二分決定図に基づくアプローチは小 規模なグラフに対して効率的に厳密解を計算可能で,サンプリン グに基づくアプローチは大規模なグラフに対して近似解を計算可 能である.

2.3 二分決定図

二分決定図(BDD)は有向非循環グラフ D = (N,A)で表現さ れる.二分決定図のノード集合を №,二分決定図のアーク集合を ▲ と定義する*1. 図 2(a) は図 1 のグラフにおける二分決定図を 示す. 各ノードは中間グラフに対応しており, アークは存在枝ま たは非存在枝と対応している.二分決定図は、入次数が0の枝が 一つあり,ルートノードと呼ばれる (図 2(a) における G1). それ ぞれのノードは、二つの出次 outgoing アークがあり、0-アークお よび 1-アークと呼ばれる (図 2(a) ではそれぞれ点線と実線で表さ れている). 0-アークおよび 1-アークはそれぞれ非存在枝と存在 枝を表しており、それぞれのアークの重みは枝の存在確率または 非存在確率を表している. ルートノードからの深さを層 l と定義 する. 層 l のノードは,枝 e1 から e1-1 が存在または非存在の中 間グラフを表し、el から el は曖昧枝である.二分決定図は出次 数がゼロのノードが2つあり、それぞれ0-シンクと1-シンクと 呼ばれる (図 2(a) ではそれぞれラベル 0 と 1 の四角で表されて いる). 中間グラフのターミナルが接続した場合, 対応するノー ドは1-シンクに遷移する.一方,中間グラフのターミナルが非接 続した場合、対応するノードは0-シンクに遷移する. ルートノー ドから1-シンクまでのアークを辿ることにより、ターミナルが接 続となる中間グラフを得ることができる. そのため、1-シンクに アークが遷移しているノードの確率値の総和を取ることにより, ネットワーク信頼性を計算することができる.

ネットワーク信頼性計算のための二分決定図を構築する方法と して、フロンティアに基づく手法がよく用いられている [8]. こ の手法はまず枝を順序付けし、順序に従って枝の状態を決定して いく.二分決定図が既に層*l*まで構築済みの場合、この手法は*el* の状態を決定し、層*l*+1の節点集合を構築する.フロンティア に基づく手法では、存在/非存在枝と曖昧枝の両方をもつ節点は フロンティア f と呼ばれ、層 l でのフロンティアの集合を \mathbb{F}_l と する.図 2(b) は、枝 e_1 と e_2 を処理した後の中間グラフを表し、 黒の実線、黒の破線、および灰色の破線はそれぞれ存在枝、非存 在枝、および曖昧枝を示す。節点 $b \ge c$ は存在/非存在と曖昧枝 の両方をもつため、フロンティアである。同じ層のノードは全て 同じフロンティア集合をもつ、フロンティアに基づく手法は、フ ロンティアの変数(例えば、曖昧枝の数や接続済みのターミナル 数など)を保持しており、フロンティアの変数が同じになった場

^{・1} 本論文では、グラフの節点と枝を"節点"および"枝"とそれぞれ呼び、二 分決定図の節点と枝を"ノード"と"アーク"とそれぞれ呼ぶ。

合にノードを結合することで、ノードの数を効果的に削除するこ とができる.

二分決定図のサイズはノードの数で定義され,メモリ使用量は 二分決定図のサイズに依存する [6].実際のメモリ使用量は事前 に推定することができないため,小規模なグラフに対してもメモ リが枯渇する可能性がある.

2.4 サンプリング

サンプリングは近似解を計算するために用いられる一般的な方 法である.サンプル数*s*が与えられたとき,サンプリングに基づ くアプローチは,(1)曖昧グラフから可能グラフを取り出す,(2) その可能グラフにおいてターミナルが接続かどうかを計算する, という処理を*s*回繰り返す.可能グラフを取り出しと接続確認の ために,それぞれ時間計算量 $O(|\mathbb{E}|)$ および $O(|\mathbb{V}| + |\mathbb{E}|)$ が必要で あるため,サンプリングに基づく手法の計算量は $O(s \cdot (|\mathbb{V}| + |\mathbb{E}|))$ となる.

サンプリングに基づく手法は乱択アルゴリズム [12] であるた め,その精度は分散により評価される.そのため,分散が小さい とエラー率が小さいことを示す.理論的な分散値を達成するため には,可能グラフをその存在確率に基づいて取り出す不編サンプ リング (unbiased sampling) が必要である.また,サンプル数が 増加すると,分散は減少するが計算量が増加するため,精度と時 間計算量にはトレードオフが存在する.

サンプリングに基づく s-t 到達可能性問合せ [9,10] に関する研 究は活発に行われている.しかし,これは2点のターミナル間の 接続性にのみ着目しており,k点のターミナルには単純には拡張 できない.筆者らの知る限り,ネットワーク信頼性を効率的に近 似計算可能な乱択アルゴリズムは提案されていない.

3 提案アプローチ

本章では,提案アプローチを説明する. 3.1 にて,サンプル数 の削減方法について述べ, 3.2 にて S²BDD を説明する.

3.1 サンプル数の削減

本節では,層化サンプリング [4,11] に基づいて高精度を維持 しつつサンプル数を削減できることを証明する.層化サンプリン グはネットワーク信頼性の近似計算の分散を小さくするこがで きるため,近似精度を損なわずにサンプル数を削減することがで きる.

層化サンプリングを適用するために、可能グラフの集合 \mathbb{W}^{g} を 3 つのサブ集合グループ \mathbb{W}_{c}^{g} , \mathbb{W}_{d}^{g} , および \mathbb{W}_{u}^{g} に分ける. \mathbb{W}_{c}^{g} お よび \mathbb{W}_{d}^{g} は、それぞれターミナルが接続および非接続となる可 能グラフのみを含んでおり、 \mathbb{W}_{u}^{g} は二つの集合に含まれていない 可能グラフが含まれている. \mathbb{W}_{c}^{g} と \mathbb{W}_{d}^{g} に含まれる可能グラフ の確率の総和をそれぞれ p_{c} と p_{d} とする. ここで、定義 1 より、 上限値と下限値は下記の式により計算できる.

$$\begin{split} R &= \sum_{G_p \in \mathbb{W}_c^{\mathcal{G}}} Pr[G_p] + \sum_{G_p \in \mathbb{W}_u^{\mathcal{G}}} I(G_p, \mathbb{T}) Pr[G_p] \\ &= p_c + \sum_{G_p \in \mathbb{W}_u^{\mathcal{G}}} I(G_p, \mathbb{T}) Pr[G_p] \\ &\geq p_c. \\ R &= 1 - \sum_{G_p \in \mathbb{W}_d^{\mathcal{G}}} Pr[G_p] - \sum_{G_p \in \mathbb{W}_u^{\mathcal{G}}} (Pr[G_p] - I(G_p, \mathbb{T}) Pr[G_p]) \\ &= 1 - p_d - \sum_{G_p \in \mathbb{W}_u^{\mathcal{G}}} (Pr[G_p] - I(G_p, \mathbb{T}) Pr[G_p]) \\ &\leq 1 - p_d. \end{split}$$

これらの式より, $p_c \leq R \leq 1 - p_d$ を得ることができる.

分散は予測手法にも依存する.提案アプローチでは,代表的な 二つの予測手法であるモンテカルロ法と Horvitz-Thompson 法を 用いる.それぞれの手法について,下限値と上限値を用いてサン プル数を削減できることを下記で述べる.

モンテカルロ法: モンテカルロ法による *Â*の計算式は下記となる.

$$\hat{R} = \frac{\sum_{i=1}^{s} I(G_{P_i}, \mathbb{T})}{s}.$$
(4)

分散は下記の式で計算される [4].

$$Var[\hat{R}] = \frac{R(1-R)}{s}.$$
(5)

不偏サンプリングであるため(つまり *E*[*R̂*] = *R*),分散は下記の式で計算できる [11].

$$Var[\hat{R}] = \frac{R(1-R)}{s} \approx \frac{\hat{R}(1-\hat{R})}{s}.$$
(6)

上限値と下限値を用いた場合,分散は下記の式で計算でき る [4,11].

$$Var[\hat{R}]' = \frac{(\hat{R} - p_c)(1 - p_d - \hat{R})}{s}.$$
 (7)

式6および式7より、下記の式を得ることできる.

$$\frac{\hat{R}(1-\hat{R})}{\hat{R}} \ge \frac{(\hat{R}-p_c)(1-p_d-\hat{R})}{\hat{R}}.$$
(8)

式(8)より、下記の定理を得られる.

Theorem 1 サンプル数 *s*,下限値 p_c ,および上限値 $1 - p_d$ が与え られたとき,サンプル数 *s*' ($\leq s$) が下記の式となる場合,サンプ ル数が *s*' の上限値と下限値を用いたモンテカルロ法によるネッ トワーク信頼性の分散は,サンプル数 *s* の場合と分散が等しい,

もしくは小さくなる.

$$s' = \begin{cases} \lfloor s(1 - p_d) \rfloor. & (p_c = 0) \\ \lfloor s(1 - p_c) \rfloor. & (p_d = 0) \\ \lfloor s(1 - 4 \cdot p_c(1 - p_c)) \rfloor. & (p_c = p_d) \\ \lfloor s(1 - 4 \cdot p_c(1 - p_d)) \rfloor. & (p_c < p_d) \\ \lfloor s(1 - \min(4p_c(1 - p_c), \\ 4(p_c(1 - p_d) + (p_d - p_c)))) \rfloor. & (p_c > p_d) \end{cases}$$

Proof: 式(8)より,下記の不等式を得る:

$$\frac{(p_c - \hat{R})(1 - p_d - \hat{R})}{\hat{R}} < \frac{\hat{R}(1 - \hat{R})}{\hat{R}}$$

s' は下記で計算される:

$$s' = s \cdot \frac{(\hat{R} - p_c)(1 - p_d - \hat{R})}{\hat{R}(1 - \hat{R})}$$

= $s \cdot \left(1 - \frac{p_c(1 - \hat{R}) + p_d(\hat{R} - p_c)}{\hat{R}(1 - \hat{R})}\right)$ (9)

Horvitz-Thompson 法: Horvitz-Thompson 法による \hat{R} の計算 式は下記となる.

$$\hat{R} = \frac{\sum_{i=1}^{s} \Pr[G_{p_i}] \cdot I(G_{p_i}, \mathbb{T})}{\pi_i},$$

 $\pi_i = 1 - (1 - Pr[G_{p_i}])^s$ である.分散は下記で計算される.

$$\begin{aligned} Var[\hat{R}] &= \sum_{i=1}^{s} \left(\frac{1-\pi_{i}}{\pi_{i}}\right) I(G_{p_{i}}, \mathbb{T}) Pr[G_{p_{i}}]^{2} \\ &+ \sum_{i}^{s} \sum_{j, i\neq j}^{s} \left(\frac{\pi_{ij}-\pi_{i}\pi_{j}}{\pi_{i}\pi_{j}}\right) I(G_{p_{i}}, \mathbb{T}) I(G_{p_{j}}, \mathbb{T}) Pr[G_{p_{i}}] Pr[G_{p_{j}}] \end{aligned}$$

 $\pi_{ij} = 1 - (1 - Pr[G_{p_i}])^s - (1 - Pr[G_{p_j}])^2 + (1 - Pr[G_{p_i}] - Pr[G_{p_j}])^s$ である.分散は下記の式で計算できる [7].

 $Var[\hat{R}] = \frac{R(1-R)}{s} - \frac{\sum_{i=1}^{s} (s-1)I(G_{p_i}\mathbb{T})Pr[G_{p_i}]^2}{2s}.$ (10)

下限値と上限値を用いた分散は下記により計算できる.

$$Var[\hat{R}]' = \frac{(\hat{R} - p_c)(1 - p_d - \hat{R})}{s} - \frac{\sum_{i=1}^{s} (s-1)I(G_{p_i}, \mathbb{T})Pr[G_{p_i}]^2}{2s}.$$
 (11)

Theorem 2 サンプル数 *s*,下限値 p_c ,および上限値 $1-p_d$ が与え られたとき,サンプル数が *s*'の上限値と下限値を用いた Horvitz-Thompson 法によるネットワーク信頼性の分散は,サンプル数 *s* (1と同式)の場合と分散が等しく,もしくは小さくなる. Proof: 式(10),(11)より,以下の式を得る.

$$\frac{(\hat{R}-p_c)(1-p_d-\hat{R})}{s'} - \frac{\sum_{i=1}^{s}(s'-1)I(G_{p_i},\mathbb{T})Pr[G_{p_i}]^2}{2s'}$$
$$= \frac{\hat{R}(1-\hat{R})}{s} - \frac{\sum_{i=1}^{s}(s-1)I(G_{p_i},\mathbb{T})Pr[G_{p_i}]^2}{2s}$$

Horvitz-Thompson 法は不偏サンプリングであるため、右項は同 じ値となる.証明は定理1と同様である. ロ

提案アプローチは定理1と2に従い、サンプル数を削減することができるため、既存のサンプリングに基づく手法より効率的に 近似値を計算可能である.

3.2 Scalable and Sampling BDD: S²BDD

ネットワーク信頼性の下限値と上限値を用いることにより,サ ンプル数を削減することができる.効率的な下限値と上限値の計 算方法として,S²BDDを開発する.S²BDDを用いることによ り,ターミナルが接続もしくは非接続となる可能グラフのうち 存在確率が高いものを効率的に探索することが出来る.さらに, S²BDDを構築しながら,上限値と下限値の計算に用いていない 可能グラフのサンプリング行う.S²BDDはメモリ使用量を抑え るため,一層のみから構成される.これは,*l*層の BDDを構築 した後は,*l*+1層の構築および下限値と上限値の計算に*l*-1層 が必要ないという観測に基づく.

S²BDD を下記に定義し、構築方法について述べる.

Definition 2 S²BDD は層 $l の / - ド集合 N および 1-シンクと 0-シンクから構成される. S²BDD は下記に示す変数を各/ード <math>n \in \mathbb{N}$ が保持する:

- *p_n*:*n*が対応する中間グラフの確率.
- ・ 全ての $f \in \mathbb{F}_l$ における $\{c_{n,f}\}$: 接続している節点の識別子. フロンティア $f \geq f'$ が存在枝にて接続している場合, $c_{n,f}$ $\geq c_{n,f'}$ は同じ値である.
- 全ての $f \in \mathbb{F}_l$ における $\{d_{n,f}\}$: $\{f' \in \mathbb{F}_l | c_{n,f} = c_{n,f'}\}$ とな るフロンティアに接続している曖昧枝の総数 $\{f' \in \mathbb{F}_l | c_{n,f} =$
- $c_{n,f'}$. • 全ての $f \in \mathbb{F}_l$ における $\{t_{n,f}\}$:存在枝によってfに接続し ているターミナルの数.

1-シンクと 0-シンクはターミナルが接続または非接続となった確 $率 p_c \ge p_d$ をそれぞれ保持している.

提案アプローチは、S²BDD を用いて下限値と上限値の計算お よびサンプリングの両方を行う.通常の BDD と S²BDD の違い について述べると、BDD は全ての層を保持するのに対し、S²BDD は一層とシンクのみ保持する.例えば、図 2 では、S²BDD は三 層目とシンクを保持するが、一層目と二層目は保持しない.

S²BDD の構築のためには,枝 e_l を処理し,l+1におけるノード集合 \mathbb{N}_{next} を計算する.構築法は,生成,結合,削除,サンプリングの4つの手順からなる.下記にそれぞれの手順を説明する.

3.2.1 生成手順と結合手順

二分決定図に基づくアプローチは、二分決定図を構築するため に生成と結合手順を実行する.この二つの手順を拡張し、ネット ワーク信頼性の精度を損なわずに、S²BDD のサイズを効果的に 小さくする. まず,生成手順について説明する.生成手順では,枝 e_l を処理 し,層l+1のノード集合 \mathbb{N}_{next} を生成する.基本的な手順と同 様に,枝 e_l の状態を決定し,層lのノードから層l+1のノード を二つ生成する.新しいノードを生成するために,ノードが保持 する変数 (つまり, p_n , $\{c_{n,f}\}$, $\{d_{n,f}\}$, および $\{t_{n,f}\}$)を更新する.

S²BDD のサイズを減少させるためには、ターミナルが接続 か非接続かを早い段階で判断することが必要である.しかし、 S²BDD におけるノードはフロンティアの変数しか保持しておら ず、中間グラフ全体を保持しているわけではない.そのため、中 間グラフにおいてターミナルが接続か非接続かをフロンティアの 変数を用いて判断する.

次に,結合手順を説明する. S²BDD における中間グラフはそ れぞれ異なる存在枝と非存在枝から構成されるため,フロンティ アの変数も通常異なる.結合手順では,同じシンクに遷移する ノードを結合し,その確率値を足し合わせる.

Lemma 1 層 $l o / - i n_1 \ge n_2$ が与えられたとき,もし $\forall f \in \mathbb{F}_l$ において (1) $c_{n_1,f} = c_{n_2,f}$,および (2) $(t_{n_1,f} = 0 \text{ and } t_{n_2,f} = 0)$ or $(t_{n_1,f} > 0 \text{ and } t_{n_2,f} > 0)$ の場合, $e_{l+1}, \ldots, e_{|\mathbb{E}|}$ の状態が同じである $n_1 \ge n_2$ の子孫ノードは同じシンクに遷移する.

Proof: 割愛する. [13] を参照されたい. □
3.2.2 削除手順

二分決定図のサイズはグラフサイズの増加に伴い指数関数的に 増加するため、メモリ制約の問題上全てのノードを保持すること は難しく、S²BDDのサイズが w を超えないようにノードを削 除する.削除手順における課題は、高い効率性と精度を保つため に、どのノードをS²BDDから削除するかである.定理1と2よ り、 $p_c \ge p_d$ が少ない枝の処理により大きく増加する場合、効果 的にサンプル数を減少させることができる.ターミナルの接続性 において n に対応する中間グラフのターミナルは $t_{n,f}$ が大きい f が存在するほど接続となりやすく、n に対応する中間グラフの ターミナルは $d_{n,f}$ が小さく、 $t_{n,f} > 0$ となる f が存在するほど非 接続となりやすい.さらに、ノードの確率値 p_n が大きい場合、n がシンクに遷移したときに $p_c \ge p_d$ が大きく増加する.これら の考えに基づいて、ノードの優先度を決定するヒューリスティッ ク関数 h を定義する.

$$h(n) = p_n \cdot \max_{f \in \mathbb{F}} \left(\frac{t_{n,f}}{k}, \frac{1}{d_{n,f}} \right) \text{ if } t_{n,f} > 0.$$

$$(12)$$

ターミナルが少なくとも一つがつながってるフロンティアに対し て、フロンティアが多くのターミナルに接続している、もしくは フロンティアが少ない曖昧枝をもっている場合に、この関数値は 大きくなる.優先度が低いノードは削除され、削除されたノード の確率値はネットワーク信頼性に加算されない.そのため、削除 したノードを近似解を求めるためにサンプリング手順で用いる. 3.2.3 サンプリング手順

提案アプローチは,層化サンプリングを用いた理論を達成する ために,下限値と上限値の計算に用いた可能グラフのサンプルと せずに,可能グラフをサンプリングする必要がある.そのため, まだターミナルが接続または非接続となっていない可能グラフ をサンプリングする.このような可能グラフのセットを W^{*G*}_{*u*} する. W^{*g*}_{*u*} は,削除されたノードと S²BDD に存在するノードに 対応する中間グラフから得ることができる.効率的なサンプリン グのために, W^{*g*}_{*u*} から動的計画法を用いてサンプリングを実施す る.加えて,層化ランダムサンプリングの考えを用いて,サブグ ループ毎のサンプル数を決定する.

まず、 \mathbb{W}_{u}^{g} をサブグループにわけ、その後それぞれのサブグ ループから可能グラフをサンプリングする.サブグループ毎のサ ンプル数は、サブグループ内の中間グラフの確率の総和に比例し て決定する.ここでは、削除されたノードと S²BDD 内のノード に分けて説明する.削除されたノードにおけるサブグループは S²BDD の同じ層で削除されたものをサブグループとする.これ は削除された節点の確率がサンプル数を決定するには小さすぎる ためである.層*l*におけるサンプル数*s_l*は、*s* と層*l*で削除され たノードの確率の総和 p_{s_l} の掛け合わせで求めることができる. S²BDD に存在するノードにおいては、それぞれのノードに対応 する中間グラフそのものがサブグループに対応し、ノードがもつ 確率に従ってサンプル数を決定できる.

3.3 計算量

提案アプローチの時間と空間計算量について説明する.

Theorem 3 曖昧グラフ *G*,更新後のサンプル数 *s'*,および S²BDD の最大幅 *w* が与えられたとき,提案アプローチの時間と空間計算量はそれぞれ $O(w^2 \log w + s'(|V| + |E|)) と O(w \log w + |V| + |E|) なる.$

Proof: まず時間計算量について述べる.提案アプローチは, S²BDD の構築とサンプリングの二つに分けることができる. S²BDD の構築では,生成および結合の処理にて,それぞれのノー ドの属性を比較する.ノードの属性数はフロンティアの数に比 例し,フロンティア数は $O(\log w)$ となる.これは,存在または 非存在となる枝数が最大で $\log w$ となるためである.そのため, S²BDD 構築の時間計算量は $O(w^2 \log w)$ となる.サンプリング の時間計算量は $O(s'(|\mathbb{V}| + |\mathbb{E}|))$ である.従って,時間計算量は $O(w^2 \log w + s'(|\mathbb{V}| + |\mathbb{E}|))$ となる.

空間計算量について述べる. 空間計算量は S²BDD のサイズと 曖昧グラフのサイズに依存する. S²BDD のサイズは, ノード数 と属性数を掛けたものとなる. 従って,空間計算量は O(w log w+ |♥| + |E|) となる. □

4 拡張手法

ネットワーク信頼性を計算する際, グラフのサイズが小さくな ると,計算コストおよびメモリ使用量が小さくなる.そのため, S²BDD 構築の前に曖昧グラフを前処理し,ネットワーク信頼性 を保ちながらサイズを小さくする.拡張手法は2枝接続コンポー ネントを用いる [3].

Definition 3(2 枝接続コンポーネント) グラフ $G = (\mathbb{V}, \mathbb{E})$ が与 えられたとき, サブグラフ $C = (\mathbb{V}_C, \mathbb{E}_C)$ は, \mathbb{E}_C からいかなる枝 を一つ取り除いてもグラフが分割されない場合, 2 枝接続コン ポーネントである. E から枝を取り除いた時, グラフが分割され る場合, その枝は橋と呼ばれる. 橋に接続する節点は, 関節点と

Algorithm	1: Comp	uting the	approximate	network	reliabil-
•,					

ity

_	· J				
	input : Uncertain graph \mathcal{G} , terminals \mathbb{T} , maximum BDD size w , size of				
	samples s , 2-edge connected components \mathbb{C} , bridges \mathbb{B} , articulation				
	points A				
	output Approximate network reliability \hat{R}				
	:				
1	1 procedure our approach				
2 set \mathbb{T} to \mathcal{G} ;					
$\hat{R}, S_{\mathcal{G}} \leftarrow \operatorname{Preprocess}(\mathcal{G}, \mathbb{T}, \mathbb{C}, \mathbb{B}, \mathbb{A});$					
4 for $\mathcal{G}_i \in \mathcal{S}_{\mathcal{G}}$ do					
5	$r \leftarrow \text{Construction}(\mathcal{G}_i, w, s);$				

- $6 \qquad \hat{R} \leftarrow \hat{R} \cdot r;$
- 7 return *R*;

/ return re,

8 end procedure

呼ばれる.2枝接続コンポーネントの集合,橋の集合,および関節点の集合をそれぞれ C, B,および A とする.

ある枝および節点を削除した際にグラフが分割されるか,され ないかを2枝接続コンポーネント,橋,および間接点から把握す ることができる.2枝接続コンポーネントはネットワークトポロ ジからのみ計算できるため事前に計算する.

拡張手法は, 枝刈り, 分解, 変換の 3 つのステップからな る. 枝刈りは不必要な枝と節点を削除し, 分解は曖昧グラフを 複数のグラフに分解, 変換はグラフの変換を行う. 枝刈りでは, R[G] = R[G']となる G'を求める. G'の枝数は, ネットワーク 信頼性に影響しない枝を削除するため, Gより小さい. 分解で は, $R[G'] = \prod_{i=1}^{m} R[G_i]$ となるサブグラフ G_1, \ldots, G_m を求める. 変換では $R[G_i] = R[G'_i]$ となる G'_i を求める. より小さいグラフ になるよう変換するため, G'_i の枝数は G_i より小さい. より具体 的な処理においては [13] を参照されたい.

拡張技術はネットワーク信頼性の計算にかかる計算コストを効 果的に小さくすることができる.さらに、サンプリングの精度も 向上することができる.

Theorem 4 $R[G] = p_b \prod_{i=1}^m R[G_i]$ となる G_1, \dots, G_m が与えら れたとき、 $0 < \hat{R} < 1$ and $0 < p_b < 1$ の場合において、ネット ワーク信頼性の分散は小さくなる.

Proof: ネットワーク信頼性は $\hat{R} = p_b \cdot \prod_i \hat{R}[G_i]$ となり,分散は 下記の式により計算できる.

$$\begin{aligned} Var[\hat{R}] &= Var[p_{b} \cdot \Pi_{i}\hat{R}[\mathcal{G}_{i}]] \\ &= (Var[p_{b}] + p_{b}^{2})(Var[\hat{R}[\mathcal{G}_{1}]] + \hat{R}[\mathcal{G}_{1}]^{2}) \cdots \\ (Var[\hat{R}[\mathcal{G}_{m}]] + \hat{R}[\mathcal{G}_{m}]^{2}) - p_{b}^{2} \cdot \Pi_{i=1}^{m}\hat{R}[\mathcal{G}_{i}]^{2} \\ &= p_{b}^{2}\Pi_{i}(Var[\hat{R}[\mathcal{G}_{i}]] + \hat{R}[\mathcal{G}_{i}]^{2}) - p_{b}^{2}\Pi_{i}\hat{R}[\mathcal{G}_{i}]^{2} \\ &= p_{b}^{2}\Pi_{i}(\frac{\hat{R}[\mathcal{G}_{i}](1-\hat{R}[\mathcal{G}_{i}])}{s} + \hat{R}[\mathcal{G}_{i}]^{2}) - p_{b}^{2}\Pi_{i}\hat{R}[\mathcal{G}_{i}]^{2} \\ &= p_{b}^{2}\Pi_{i}(\hat{R}[\mathcal{G}_{i}](\frac{(1+(s-1)\hat{R}[\mathcal{G}_{i}])}{s}) - p_{b}^{2}\Pi_{i}\hat{R}[\mathcal{G}_{i}]^{2} \\ &< \frac{p_{b}^{2}\Pi_{i}\hat{R}[\mathcal{G}_{i}]}{s} - \frac{p_{b}^{2}\Pi_{i}\hat{R}[\mathcal{G}_{i}]^{2}}{s} \\ &= p_{b}\frac{\hat{R}[\mathcal{G}_{i}](1-\hat{R}[\mathcal{G}_{i}])}{s} < \frac{\hat{R}(1-\hat{R})}{s} \end{aligned}$$
(13)

ここで, $Var[p_b] = 0$ である. $Var[\hat{R}]$ は分解せずにネットワー

Algorithm 2: Constructing S²BDD **input** : Uncertain graph G, maximum size w, number of samples s**output** Approximate network reliability \hat{R} 1 procedure Construction(G, w, s) 2 Ordering(𝔅); 3 $p_c, p_d, \hat{p_{s_l}}, c \leftarrow 0;$ /* initialize probabilities and sampling count */ 4 $s' \leftarrow s$; 5 $\mathbb{N} \leftarrow \text{CreateRoot}; \mathbb{F} \leftarrow null;$ 6 for l for $1, \dots, |\mathbb{E}|$ do $p_{\mathbb{N}}, p_{s_i} \leftarrow 0;$ $\mathbb{F}' \leftarrow \mathbb{F}$; compute \mathbb{F} based on e_l ; while N is empty do q $n \leftarrow \mathbb{N}.pop;$ 10 **for** *state* \in { *non-existent*, *existent* } **do** 11 $set(n, \mathbb{F}', \mathbb{F}, state, \mathcal{G}, e_l);$ 12 if *n* is 0-sink then $p_d \leftarrow p_d + p_n$; 13 else if *n* is 1-sink then $p_c \leftarrow p_c + p_n$; 14 15 else **if** hashmap[n] is not null **then** 16 17 else 18 if $|\mathbb{N}_{next}| \leq w$ then 19 $h_n \leftarrow h(n);$ 20 21 \mathbb{N}_{next} .add(*n*); *hashmap*[*n*] \leftarrow *n*; $p_{\mathbb{N}next} \leftarrow p_{\mathbb{N}next} + p_n;$ 22 else $p_{s_i} \leftarrow p_{s_i} + p_n;$ 23 for i for 24 1, ..., $\lfloor s' \cdot (1 - \hat{p_{s_l}} - p_{\mathbb{N}_{next}} - p_c - p_d) \rfloor$ do if Sampling(\mathcal{G} , n) then $c \leftarrow c + 1$; 25 if $c + \lfloor s' \cdot p_{\mathbb{N}_{next}} \rfloor \ge s'$ then 26 for $n \in \mathbb{N}$ do 27 28 for *i* for $1, \dots, \lfloor s' \cdot p_{\mathbb{N}_{next}} \rfloor$ do **if** Sampling(\mathcal{G} , n) **then** $c \leftarrow c + 1$; 29 30 break: if \mathbb{N}_n is empty then 31 break; 32 $\mathbb{N} \leftarrow \mathbb{N}_{next};$ 33 sort \mathbb{N} in descending order of h(n); 34 $\hat{p_{s_l}} \leftarrow \hat{p_{s_l}} + p_{s_i}$; compute s'; clear \mathbb{N}_{next} ; clear hashmap; 35 36 compute \hat{R} based on the sampling;

37 return *Â*;

38 end procedure

ク信頼性を計算した場合に比べて小さい.

5 提案アプローチのアルゴリズム

本章では、提案アプローチのアルゴリズムについて述べる.ア ルゴリズム1は、提案アプローチの概要の疑似コードである.提 案アプローチはまず拡張手法を用いてグラフを分割する (line 3). 拡張手法のアルゴリズムにおいては [13] を参照されたい.それ ぞれの分解されたグラフに対して、S²BDD を構築し、ネットワー ク信頼性の近似解を得る (lines 4–5).全ての近似解を掛け合わせ たものが、全体のグラフのネットワーク信頼性となる (line 6).

名称	略称	タイプ	節点数	枝数
Zachary-karate-club	Karate	Social	34	78
American-Revolution	Am-Rv	Affiliation	141	160
DBLP before 2000	DBLP1	Coauthorship	25,871	108,459
DBLP after 2000	DBLP2	Coauthorship	48,938	136,034
Tokyo	Tokyo	Road network	26,370	32,298
New York City	NYC	Road network	180,188	208,441
Hit-direct	Hit-d	Protein	18,256	248,770

6 評価実験

提案アプローチを計算効率,精度,およびメモリ使用量の観点 から評価を行う.

6.1 データセット

実験にて使用したデータセットを表1にまとめる. 最初の2つ のデータセット; Zachary-karate-club と American-revolution は, KONECT*2からダウンロードした小規模なグラフデータである. 小規模なグラフでは,枝の存在確率は一様分布に基づいてランダ ムに与えた.他の5つのデータセット; DBLP before 2000, DBLP after 2000, Tokyo, New York City, および Hit-direct は,大規模な グラフデータである.枝の存在確率は,それぞれのデータの枝の 属性値に基づいて計算した.

6.2 設定と実装

それぞれのデータセットに対して,ターミナルをランダムに選び 20 回の検索を行う.ターミナル数 k,および S²BDD の最大幅を w 変化させる.比較手法として,サンプリングに基づく手法 と BDD に基づく手法を用いる.BDD に基づく手法は最新ライブラリである TdZDD*³を用いる.全てのアルゴリズムは C++ で 実装され,Intel Xenon E7-8860v4, 256GB RAM が搭載された計算機にて実験を行う.

6.3 効率性

提案アプローチ,拡張手法を用いない提案アプローチ,サンプ リングに基づくアプローチ,および二分決定図に基づくアプロー チの効率性を比較する.提案アプローチとサンプリングに基づく アプローチは,モンテカルロ法を用い,sを10,000とする.提 案アプローチにおいては,wを10,000とする.提案アプローチ, 拡張手法を用いない提案アプローチ,サンプリングに基づくアプ ローチ,および二分決定図に基づくアプローチの凡例をぞれぞれ Pro(MC), Pro(MC)w/o ext, Sampling(MC),および BDD とする. Horvits-Thompson 法は同傾向の結果であるため割愛する.

図3はkが5,10,20の場合における応答時間を示す.DNF はメモリ制限により計算できなかった場合を表す.図3より,提 案アプローチはサンプリングに基づくアプローチより高性能であ ることを示している.二分決定図に基づくアプローチは大規模な グラフではメモリ枯渇により計算ができない.提案アプローチは TokyoとNYCデータセットにおいての効率性が高い.これは, 道路ネットワークは平面グラフに近いため,S²BDDの構築が効 率的および前処理によるグラフサイズの削減が大きいためであ る.一方で,Hit-directデータセットでは,節点の平均次数が大 きく上限値と下限値の幅が狭まらないため,効率性が低いが,そ れでもサンプリングに基づくアプローチより効率的である.

6.4 最大幅の影響

S²BDD の最大幅を変化させた場合のメモリ使用量と応答時間 を評価する. 図4は, (a) メモリ使用量と(b) 応答時間を示す. 図 4(a) より,最大幅を大きくするとメモリ使用量が大きくなること がわかる. 一方で,グラフサイズには影響されていないことがわ かる. 提案アプローチはメモリ使用量の観点では,大規模なグラ フに対応することができることを示している. 図4(b) より,最 大幅は応答時間にそれほど影響していないことがわかる. 最大幅 が大きいとき,サンプル数はより削減可能だが,S²BDD の構築 に時間がかかる. 提案アプローチの応答時間は最大幅にロバスト であることがわかる. これらの結果は,提案アプローチは大規模 なグラフに対しても効果的に応答時間を削減できることを示して いる.

6.5 精度

次に,提案アプローチとサンプリングに基づくアプローチの 精度を検証する.サンプリング手法として,モンテカルロ法と Horvitz-Thompson法 (Pro(HT) と Sampling(HT))の両方を用い る.大規模なグラフでは厳密解を計算できないため,厳密解が 計算可能な小規模なグラフである Karate と Am-Rv データセッ トを評価に用いる.分散とエラー率を近似解の精度の指標とし, それぞれ次の式で計算する.variance = $\frac{\sum_{i=1}^{q_1}\sum_{j=1}^{q_2}(R_i - \hat{R}_{i,j})^2}{q_1 \cdot q_2}$ および error rate = $\frac{\sum_{i=1}^{q_1}\sum_{j=1}^{q_2}|R_i - \hat{R}_{i,j}|}{q_1 \cdot q_2 \cdot R_i}$ とし, $R_i \geq \hat{R}_{i,j}$ は i 番目の検索の ネットワーク信頼性の厳密解と, i 番の検索における j 番目の近 似解をそれぞれ示す.検索回数を 100 回とし,それぞれの検索に 対して 100 回近似解を計算する.

表 2 は Karate と Am-Rv データセットにおける精度を示す. 表 2 より,提案アプローチは精度においてサンプリングに基づく アプローチを上回っていることがわかる.また,Am-Rv データ セットでは,提案アプローチのエラー率が常にゼロであるため, 常に厳密解を計算できていることがわかる.サンプリングに基づ くアプローチは k が 20 の場合に,分散は小さいがエラー率が大 きくなっている.これは,ネットワーク信頼性が非常に小さいた め,サンプリングに基づくアプローチでは,ターミナルが接続し ている可能グラフをサンプリングすることができないためであ

^{*2} http://konect.uni-koblenz.de/

^{*3} https://github.com/kunisura/TdZdd

図 3: 効率性

図 4: 最大幅の影響

表 2: 精度

k	Mathad	Karate		Am-Rv	
	Wiethou	分散	エラー率	分散	エラー率
	Pro(MC)	0.025	0.036	0	0
5	Pro(HT)	0.025	0.036	0	0
5	Sampling(MC)	0.025	0.037	$0.43 \cdot 10^{-4}$	0.061
	Sampling(HT)	0.029	0.042	$0.31 \cdot 10^{-4}$	0.059
	Pro(MC)	0.013	0.058	0	0
10	Pro(HT)	0.014	0.059	0	0
10	Sampling(MC)	0.013	0.058	$0.099 \cdot 10^{-5}$	0.38
	Sampling(HT)	0.015	0.062	$0.12 \cdot 10^{-5}$	0.37
	Pro(MC)	$0.76 \cdot 10^{-3}$	0.054	0	0
20	Pro(HT)	$0.85 \cdot 10^{-3}$	0.057	0	0
20	Sampling(MC)	$0.78 \cdot 10^{-3}$	0.056	0.10.10-3	1.00
	Sampling(HT)	$0.86 \cdot 10^{-3}$	0.057	$0.10 \cdot 10^{-3}$	1.00

る. これにより,近似解は頻繁にゼロとなり,エラー率は1とな りやすい. これらの結果より,提案アプローチは少ないサンプル 数で高い精度を達成し,小規模グラフにおいては厳密解を計算で きることがわかる.

7 まとめ

本論文では、ネットワーク信頼性において高い効率性と精度を 達成するアプローチを提案した.提案アプローチは精度を損なわ ずにサンプリング数を削減させた. S²BDDより効果的に下限値 と上限値を求め、ネットワーク信頼性の効率的な近似計算を実現 した.実験結果より、提案アプローチは既存の手法より 51.2 倍 高速かつ高精度であることを示した.

謝辞

本研究は JST ACT-I (JPMJPR18UD) および科学研究費 (JP15K21069)の支援によって行われた. 謝意を表す.

参考文献

- Saurabh Asthana, Oliver D King, Francis D Gibbons, and Frederick P Roth. Predicting protein complex membership using probabilistic network reliability. *Genome research*, 14(6):1170–1175, 2004.
- [2] Michael O Ball, Charles J Colbourn, and J Scott Provan. Network reliability. *Handbooks in operations research and management science*, 7:673–762, 1995.
- [3] Lijun Chang, Jeffrey Xu Yu, Lu Qin, Xuemin Lin, Chengfei Liu, and Weifa Liang. Efficiently computing k-edge connected components via graph decomposition. In *SIGMOD*, pages 205–216, 2013.
- [4] George S Fishman. A comparison of four monte carlo methods for estimating the probability of st connectedness. *IEEE Transactions on reliability*, 35(2):145–155, 1986.
- [5] R Hamer, G De Jong, E Kroes, and P Warffemius. The value of reliability in transport–provisional values for the netherlands based on expert opinion. *Transport Research Centre of the Dutch Ministry of Transport*, 2005.
- [6] Gary Hardy, Corinne Lucet, and Nikolaos Limnios. K-terminal network reliability measures with binary decision diagrams. *IEEE Transactions on Reliability*, 56(3):506–515, 2007.
- [7] Ruoming Jin, Lin Liu, Bolin Ding, and Haixun Wang. Distanceconstraint reachability computation in uncertain graphs. *PVLDB*, 4(9):551–562, 2011.
- [8] Jun Kawahara, Takeru Inoue, Hiroaki Iwashita, and Shinichi Minato. Frontier-based search for enumerating all constrained subgraphs with compressed representation. *IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences*, 100(9):1773– 1784, 2017.
- [9] Xiangyu Ke, Arijit Khan, and Leroy Lim Hong Quan. An in-depth comparison of st reliability algorithms over uncertain graphs. *PVLDB*, 12(8):864–876, 2019.
- [10] Rong-Hua Li, Jeffrey Xu Yu, Rui Mao, and Tan Jin. Recursive stratified sampling: A new framework for query evaluation on uncertain graphs. *IEEE Transactions on Knowledge and Data Engineering*, 28(2):468– 482, 2015.
- [11] Eugène Manzi, Martine Labbé, Guy Latouche, and Francesco Maffioli. Fishman's sampling plan for computing network reliability. *IEEE Transactions on Reliability*, 50(1):41–46, 2001.
- [12] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Chapman & Hall/CRC, 2010.
- [13] Yuya Sasaki, Yasuhiro Fujiwara, and Makoto Onizuka. Efficient network reliability computation
- in uncertain graphs. In *EDBT*, 2019.
- [14] S Thompson. *Sampling*. Wiley, 2002.
- [15] Leslie G Valiant. The complexity of enumeration and reliability problems. *SIAM Journal on Computing*, 8(3):410–421, 1979.