深層学習を用いた土地価格推定モデルにおける衛星画像の有効性の評価

山田 慎也[†] 奥野 智也[†] 原田 圭[†] 佐々木勇和[†] 鬼塚 真[†]

† 大阪大学大学院情報科学研究科 〒 565-0871 大阪府吹田市山田丘 1-5 E-mail: †{yamada.shinya,okuno.tomoya,harada.kei,sasaki,onizuka}@ist.osaka-u.ac.jp

あらまし 土地価格推定は,不動産の売買や都市開発計画の際に重要な役割を果たす.従来の推定モデルでは土地の 特徴量に加えてその周辺情報を推定器の入力に用いる.しかしながら,測定及び入手可能な周辺情報には限りがあり, 推定精度の向上を目指す上で課題となる.本稿では,土地の周辺情報として衛星画像を利用した深層学習モデルによ る土地価格推定技術の有効性を検証する.深層学習モデルとしては,測量データに MLP,衛星画像に CNN を用いる ことにより,土地価格との関係性を学習する.実験では、国土交通省土地総合情報システムより取得できる土地の公 示価格および測量データと,衛星データプラットフォームである Tellus が提供する衛星画像データを用いて,周辺情 報を用いた推定結果と衛星画像を用いた推定結果,及び両者を併用した推定結果を比較することにより,衛星画像が 推定精度に与える影響を評価する.

キーワード 畳込みニューラルネットワーク,回帰分析,空間データ分析

1. はじめに

土地価格は不動産を取引する上で重要な指標である. 顧客お よび不動産管理者は土地価格を参考として、付加価値やその妥 当性を判断しながら不動産取引を行う. さらに, 土地価格は地 域の経済発展状況を把握する上でも重要な指標となる. 土地価 格を参考として算出される地域の経済発展状況は都市部での再 開発計画や発展途上地域での資源供給計画に活用される. この ように土地価格は社会生活や都市の自治における様々な場面で 活用される重要な指標である.しかしながら、土地価格の決定 には様々な要因が複雑に関係するため高度な専門的知識を必要 とする.現在,土地価格は国土交通省に所属する土地鑑定委員 会がいくつかの目安となる標準的な土地(以下、標準地)を選 定し年一回の頻度で算出している.このように選定された標準 地において土地鑑定委員会が算出した土地価格は公示価格と呼 ばれる. 例えば平成 31 年度は全国 26,000 地点が標準地として 選定され公示価格が定められている.一方,標準地以外の土地 については公示価格は標準地のみで決定される価格であるため 専門家が公的に算出した土地価格は存在しない.一般的に,標 準地以外の土地価格は過去の取引価格を基に算出される価格, 近隣あるいは類似した標準地の公示価格を参考として算出され る価格、あるいは個別に不動産鑑定士に依頼することで算出さ れる価格のいずれかである.しかしながら、過去の取引価格を 基に算出される価格や他の公示価格を基に算出される価格が取 引される土地の適正価格である保証はなく、また不動産鑑定士 への依頼は非常に高額である.

標準地以外の土地価格を知るために,情報科学技術を用いて 既知の土地価格データから任意の土地の適正価格を推定する土 地価格推定が盛んに研究されている.土地価格推定では土地の 特徴と土地価格の相関関係を利用する.回帰分析を利用した手 法では土地の特徴と土地価格の相関関係から導出される回帰 モデルを利用し任意の土地の特徴に対して土地価格を推定す る[1][2].特に,近隣の駅や海岸までの距離といった土地の周 辺情報の空間的な関係性を考慮した空間自己回帰モデル[2]は 高い性能を示している.さらに,近年は深層学習を用いた手法 がより高い精度を達成している[3].深層学習手法では,空間自 己回帰モデルと同様に土地の周辺情報を特徴量として利用する.

しかしながら,土地価格は多様な要因が複雑に関係して決定 されるため,測量データによる周辺情報(例えば,近隣の駅ま での距離)では抽出できない潜在的な周辺情報の影響を受ける と考えられる.例えば,土地価格は近隣地域の土砂崩れなどの 災害の影響を受ける可能性がある.また,計測コストを考慮す ると測量データの追加には限界がある.土地の潜在的な周辺情 報を含み,かつ収集が容易な特徴量を利用することにより,土 地価格推定の精度向上および周辺情報の追加コストの削減が期 待できる.

土地の周辺情報を視覚情報として網羅的に抽出可能であり、 かつ収集も容易なデータとして衛星画像が挙げられる.文献[4] では土地価格推定と類似するタスクである住宅価格推定におい て、測量データに加えて衛星画像を特徴量として利用した場合 に測量データのみを特徴量として利用した場合と比較して高い 推定精度を達成している.そのため、衛星画像は土地の潜在的 な周辺情報を効果的に抽出可能であると考えられる.

本稿では深層学習を用いた土地価格推定における衛星画像の 有効性を評価する.評価実験においては(1)土地の周辺情報の みを特徴量として利用した場合,(2)衛星画像のみを特徴量と して利用した場合,および(3)土地の周辺情報と衛星画像の両 方を特徴量として利用した場合についてそれぞれの推定精度を 比較し,深層学習を用いた土地価格推定において衛星画像が特 徴量として有効であることを示す.本稿では土地情報および衛 星画像を深層学習で利用するために多層パーセプトロン(MLP) を用いた全結合ニューラルネットワークおよび畳み込みニュー ラルネットワーク(CNN)をそれぞれ利用する.また,土地の 周辺情報と衛星画像の両方を利用する場合は MLP および CNN で得られたニューラルネットワークの中間表現を結合し,結合 された中間表現に対して MLP を適用して推定値を出力する. 評価実験に用いるデータは国土交通省が公開している土地の公 示価格データと土地周辺の測量データ [5],および Tellus [6] か ら収集した衛星画像を用いる.本実験により,衛星画像から抽 出される特徴量が深層学習を用いた土地価格推定において有効 であることを示す.

本章の構成は以下の通りである. 2. 章では土地価格推定に関 する研究及び衛星画像を用いた研究の関連研究について述べ, 3. 章で本稿で取り組む課題を定義する. 4. 章では本稿で議論 する推定モデルについての言及する. 5. 章では評価実験につ いて述べ, 6. 章でまとめを行う.

2. 関連研究

2.1 土地価格推定

これまで研究されてきた土地価格推定は大きく二つの手法 に分類できる.一つ目は回帰分析を利用した推定である.へ ドニック回帰モデル [1] では都心への交通利便性や土地面積と いった土地の特徴要素をベクトルで表現し、土地の特徴ベクト ルおよび対応する土地価格それぞれを独立変数とした回帰モデ ルを導出する.推定対象となる土地の特徴ベクトルを回帰モデ ルに入力することで対応する土地価格を推定する.また,空間 自己回帰モデル(Spatial Autocorrelation Regression: SAR) [2] では近隣の土地同士の空間的な関係性を考慮した回帰分析 を行う.土地の価格形成には地域的・社会的なまとまりが影響 を及ぼすため、近隣地域に属する土地同士あるいは類似性の高 い土地同士の関係性を考慮することでより高い精度で土地価格 を推定することができる. SAR では推定対象となる土地と同 地域にある土地との類似性を隣接行列で表現し,土地の特徴と 合わせて回帰モデルを導出する.近隣の土地との類似性を表す 隣接行列を回帰モデルの導出に利用することで推定対象となる 土地と類似した近隣の土地間の関連性を土地価格推定に影響さ せることができる.また,空間的な位置によって回帰係数が変 化するという仮定の下で回帰モデルを導出する地理的加重回帰 (Geographically Weighted Regression: GWR) [7] を利用し た土地価格推定も研究されている.

二つ目は深層学習を利用した推定である.近年の深層学習技術の発展にともない土地価格推定においてもニューラルネット ワークが利用されている.しかしながら,深層学習を利用した土地価格推定は未だ歴史が浅く,[8][9]では土地価格推定に 一層の全結合ニューラルネットワークが利用されている.しかし、単純なニューラルネットワークであっても既存の回帰分析 手法と比較して高い推定精度を達成している[3].[10]では人 エニューラルネットワーク(ANN)が,特に価格帯の変動性が 大きい不動産群に対して,ヘドニック回帰モデルよりも高精度 な価格推定が行えることを実証している.

2.2 住宅価格推定

土地価格推定の類似タスクである住宅価格推定においても機

械学習の手法が盛んに用いられており,回帰木やランダムフォ レストなどのアルゴリズムが検証されている [11] [12].その中 でも特にニューラルネットワークを利用した手法が盛んに研究 されている [13] [14].

[15] では推定対象となる住宅に対して,異なる視点から撮影した複数の住宅写真を組み合わせた画像を利用しニューラルネットにより住宅価格の推定を行う. CNN アーキテクチャとしては残差ニューラルネットワーク (Res-Net) [16] を採用している. Res-Net は,畳み込み層前の入力を畳み込み層後にも直接用いることで,層が深くなることに対する勾配の消失問題に対処し,優れた性能を発揮している.[17].また CNN 単体だけでなく,長期的な依存関係を学習する Long Short-Term Memory ニューラルネットワーク (LSTM) とのハイブリッドモデルも提案されている [18].

また,[4] では住宅価格推定に衛星画像から抽出した周辺情報 を土地価格推定に利用している.特定の住宅に対してスケー ルの異なる複数の周辺地域の衛星画像を特徴量として考慮し, Inceptionv3[19] や vgg16[20] などの CNN モデルを利用して 対象となる土地の価格を推定する.この手法は,[21] らと比較 して優れた性能を発揮している.また,実験結果として住宅の 周辺情報を表す測量データに加えて衛星画像を特徴量として利 用した場合に,測量データのみを特徴量として利用した場合と 比較して高い推定精度を達成している.

このように住宅価格推定の研究は非常に多くの深層学習モデ ルが提案されている.これと比較して、土地価格推定分野では 単純な深層学習モデルが多く、多様なデータを併用した推定は まだ盛んに行われていない.そこで本稿では、住宅価格タスク で用いられている、衛星画像を特徴量とする手法を土地価格推 定に応用する.

2.3 深層学習における衛星画像の利用

近年,衛星画像は比較的容易に収集・利用可能となっており 様々なデータ分析に利用されている.特に,衛星画像は都市の 状態を時間的および空間的に表現するデータであるため都市か ら収集されるデータに対する深層学習技術の応用分野において 活用が進んでいる. [22] は衛星画像から道路ネットワークを検 出しグラフを生成する研究であり,オブジェクト検出とグラフ 生成を同時に行う.[23] は衛星画像から発展途上国の消費支出 や経済資産を推定する貧困予測を行っている.以上のように衛 星画像を深層学習で利用する多くの研究ではネットワーク構造 として CNN が採用されている.

3. 問題定義

本研究で行う土地価格推定では土地及びその周辺情報と衛星 画像データを特徴量として、土地の適正価格を推定する.本章 ではまず、土地と土地周辺の情報および衛星画像データを定義 する.続いて、国土交通省の土地鑑定委員会によって定められ る標準地と公示価格、および標準地以外の土地の適正価格につ いて定義を行う.最後に、周辺情報および衛星画像を利用して 任意地点の適正価格を推定する土地価格推定を定義する.

3.1 予備知識

3.1.1 土地および周辺情報

土地鑑定委員会が年一回毎に全国から選定した標準地に対 して定めた客観的な土地価格を公示価格と呼ぶ.本稿で取り 扱う土地は標準地,その土地の価格は公示価格である.全国各 地に存在する土地 l_i には価格 p_i が定められる.土地 l_i は中心 点の位置 λ_i を持っており, λ_i は緯度 ϕ_i および経度 ψ_i 用いて $l_i = (\phi_i, \psi_i)$ と表される.本稿では全国各地の n 地点の土地の 集合を $L = \{l_1, \ldots, l_n\}$ とする.

土地周辺の測量データは土地そのものの特徴を表すデータ, および周辺環境との関係性を表すデータが存在する.本稿では 土地そのものの特徴を表すデータとして (1) 地積,周辺環境と の関係性を表すデータとして (2) 周辺位置からの距離および (3) 前面道路の幅員を用いる.それぞれについて詳しく説明する.

まず、土地の地積を導入する.地積は土地の面積を意味する. 地積は土地の特徴を表す基本的な指標であり、その広狭は土地 価格に大きく影響すると考えられる.本稿では土地 l_i の地積を $a_i[m^2]$ と表す.

次に人流の多い地点からの距離を導入する.土地の位置 λ は 土地の特徴を表す指標として直接的に重要な意味を持たない. 一方で、周辺位置との関係性を考慮した土地の所在地はその土 地の特徴を表す重要な指標となる. 例えば, 駅や空港, 役所と いった社会的価値の高い場所に近いエリアでは土地価格が高騰 することが考えられる.そこで、本稿では特徴量として土地 *l*_i の位置 λ_iを基にして、人流の多い地点までの距離および最寄 り駅までの距離を計算し土地価格推定の特徴量とする.土地 l_i から人流の多い地点 p_k までの距離を $d_i^{p_k}$ と表す. 人流の多い 地点は土地の位置から極度に遠方にある場合も多い. そのため 本稿では,距離の計算に大円距離[24]を用いる.大円距離とは, 地球を半径 r[km] の球体と考えた場合の球の中心を通る切り口 の円上で任意の2地点を結ぶ弧の長さである.pkの緯度およ び経度をそれぞれ ϕ_{p_k} および ψ_{p_k} とするとき、 $d_i^{p_k}$ は大円距 離を用いて式(1)で求められる.なお、本稿では地球の半径を *R* =6370[km] とする.

$$d_i^{p_k} = \mathcal{R} + \arccos(\sin \phi_i \sin \phi_{p_k}$$
(1)
+ $\cos \phi_i \cos \phi_{p_k} \cos(\psi_i - \psi_{p_k}))$

さらに,最寄駅からの距離を説明する.本稿では土地 l_i から 最寄り駅sまでの距離を d_i^s [m]と表す.最寄り駅は比較的近距 離にある場合が多く,駅距離の計算はユークリッド距離と同様 のものとする.

最後に,前面道路の幅員を導入する.住宅敷地に利用する土 地には少なくとも1つの前面道路が存在し得る.前面道路とは 敷地に2[m]以上接するような建築基準法で定められた道路を 指し,前面道路の幅員とはその道路の幅の長さを表す.土地が 二つ以上の道路に接している場合は,幅員の大きい方を前面道 路とする.前面道路の幅員の大小は土地の利便性や静閑性に 影響すると考えられる.土地*l*_iに接する前面道路 *r*_kの幅員を *w*_i^{*r*_k}[cm]とする.以降では*w*を前面道路と呼ぶ.

3.1.2 衛星画像

衛星画像は,非常に広範囲の地表の状態を人工衛星から撮影 したものである.地球規模から市町村規模まで多様なスケール に対応しており,地表の様子を視覚的に捉えることが可能であ る.したがって,ある被写体の土地に対してその周辺の状況を 広範囲にわたって捕捉している.この情報は,近隣の土地と強 く相関を持つ土地価格の推定に対して非常に重要な影響をもた らすと考えられる.例えば,土地の周辺に高層ビルや商業施設 が多数確認できればその土地は発展した都会に位置することが 予想され,その価格も高額であることが直感的にでも予想され る.反対に土地の周辺に山々や田畑が多く広がっていればその 土地は比較的郊外に位置し,安価な価格づけがなされていると 予想できる.これらの特徴は画像の RGB 成分から深層学習モ デルで十分に抽出できると考え,本研究では特徴量として採用 し,その是非について議論する.

また衛星画像は人工衛星のセンサが受け取る波によって図1 のように主に二つに分類される.一つは光学画像である.可視 光や近赤外線など,地上の物体に反射した太陽光を収集してい る為,陸地や植生など地上に存在する物体の形状や色がはっき りと認識できる.一方で太陽光のない夜間の撮影や,太陽光を 反射してしまう雲で覆われた地域の撮影には不適切である.も う一方は SAR 画像である.合成開口レーダー(SAR:Synthetic Aperture Radar)と呼ばれるセンサーでマイクロ波を収集す る為,その波長により陸地や水面などの任意の材質に特化した 形状を認識することができるモノクロ画像である.太陽光を必 要とせず,電波は雲を通過する性質があることから撮影環境に 左右されないという特徴がある.

土地推定においては、色彩や物質の形状が重要と考えられる ため、土地周辺の視覚的な特徴を抽出することから光学画像を 採用する.

土地 l_i を中心とする $n \times n$ ピクセルの衛星画像 S_i を行列 (3) の形で表す. v_{kl} はそのピクセルの RGB 値を持つベクトルで あり, $c_r^{kl}, c_g^{kl}, c_b^{kl}$ はそれぞれ画像内の位置 (k.l) における赤,緑, 青の 0 から 255 内の RGB 値である.

$$v_{kl} = (c_r^{kl}, c_g^{kl}, c_b^{kl})$$
(2)

$$S_{i} = \begin{pmatrix} v_{11} & v_{12} & \dots & v_{1n} \\ v_{21} & v_{22} & \dots & v_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ v_{n1} & v_{n2} & \dots & v_{nn} \end{pmatrix}$$
(3)

3.2 問題定義

前節の予備知識を利用して,土地価格推定を以下のように定 義する.

問題定義 (土地価格推定) ある土地 l_i に対して,地積 a_i ,人 流の多い地点からの距離 $d_i^{p_k}$,最寄駅からの距離 d_i^s ,前面道路

⁽注1):[6]

図 1 衛星画像例^(注1), 左:光学画像, 右:SAR 画像^(注1)

の幅員 $w_i^{r_k}$ 及び衛星画像 S_i が入力として与えられた時,その 土地の価格 p_i を求める問題を,土地価格推定と定義する.推 定器の訓練には土地 l_j に対して価格 p_j を正解値として採用し, 推定された土地価格 p'_j と正解値 p_j とを比較し,その誤差が最 小となるよう最適化処理を繰り返す.

4. 推定手法

本章では、土地価格推定の各モデルについて説明する.土地の周辺情報のみを用いるモデル、衛星画像のみを用いるモデル、周辺情報と衛星画像を共に使用するモデルをそれぞれ *MLP*モデル、*CNN*モデル、結合モデルと呼ぶ.

4.1 MLP モデル

MLP モデルは、従来の研究で用いられている手法であり、入 力に土地の周辺情報のみを用いる.本稿で用いる MLP は入力 層、3 つの中間層、出力層が順に全結合する多層パーセプトロ ンである.中間層のニューロン数は入力層から近い順に32,16, 8 とし、それぞれ全結合する.MLP モデルでは、入力する土地 の周辺情報を入力層から順伝播し出力層で土地価格の推定値を 出力する.

4.2 CNN モデル

CNN モデルでは入力に衛星画像のみを利用する.入力され た衛星画像は、カーネルを利用した畳み込み計算によって画像 全体の情報を保持しながら低サイズのベクトルに変換される. なお、畳み込み計算を行う層を畳み込み層と呼び、変換された 低サイズのベクトルを特徴マップと呼ぶ. CNN では変換され た特徴マップに繰り返し畳み込み計算を適用することで予測に 必要な情報を保持しながらより低サイズの特徴マップに変換 する. n 番目の畳み込み層における特徴マップの i 番目の要素 $x_i^{(n+1)}$ が n+1 番目の畳み込み層における特徴マップの j 番目の 要素 $x_i^{(n+1)}$ に変換されるとき、 $x_i^{(n+1)}$ は式 (4) で表される.

$$x_j^{(n+1)} = f\left(\sum_{i \in (M)_j} x_i^{(n)} \otimes k_{ij} + b_j\right)$$
(4)

ここで, k_{ij} は $x_i^{(n)}$ にかかる畳み込みカーネルで, b_j はバイアス値である [25].

CNN は入力に画像を利用する研究分野において盛んに研究 されており,優れた成果を発揮するモデルが数多く提案されて いる [26].特に ResNet [16] は,複数視点から撮影された住宅

図 2 ResNet の特徴 左図:シンプルな 2 層の NN, 右図:残差 2 層 NN^(注2)

図 3 ResNet18 概要図

画像を利用した住宅価格推定において高い推定精度を達成する. よって CNN モデルとして ResNet を基にしたアーキテクチャ を構築する.

ResNet は, ImageNet [27] に存在する大量の画像を 1000 の 属性に分類する為に考案された CNN モデルの一種である. 一 般的な CNN は層が極端に深くなると勾配消失の影響が強まり 精度が悪化するが、入力画像だけでなく残差を学習させること でその影響を抑えることができる.図2の左図は通常の2層 ニューラルネットワークを表し,右図は残差2層ニューラルネッ トワークを表す. 学習すべき関数を H(x) とすると, 左図の 2 層は入力 x に対して H(x) に適合するように学習する.一方で, 右図は入力 x に対して $\mathcal{F}(x)$ に適合するように学習する. ここ で F(x) は式 (5) で表される.入力 x が最適である場合は重み の更新が必要ないことを考慮すると、F(x)ではx > H(x)が 非常に近い値であってもそのわずかな誤差を学習しやすい. こ の構造により層の深い CNN においても精度の低下を防ぐこと ができる. 残差2層ニューラルネットワークは ResNet で用い られており building block と呼ばれる. また, building block を直列に二つ接続したものを一つの畳み込みブロックとし、そ れらを複数結合させることで畳み込み層を深くする.4つの畳 み込みブロックを組み合わせたモデルは ResNet18 と呼ばれる.

$$\mathcal{F}(x) = \mathcal{H}(x) - x \tag{5}$$

(注2): [16]

図 4 結合モデル概要図

恚	1	公示価格の統計値
1	- L	

統計値	大阪府	東京都	北海道
件数(件)	742	1,250	165
平均值 (円)	$293,\!414$	$603,\!380$	$199,\!190$
中央値 (円)	194,000	$495,\!000$	126,000
標準偏差 (円)	302,296	384,818	263,090
最小値 (円)	1,840	114,000	25,000
最大値 (円)	1,900,000	2,000,000	1,863,000

本稿の CNN モデルは衛星画像の特徴量を抽出する部分と価 格推定を行う部分からなる.衛星画像の特徴量を抽出する部分 では ResNet18 を利用し,価格推定を行う部分では 4.1 節で述 べた MLP モデルを用いる.図3に ResNet18 を利用した特徴 量の抽出部分の構成を示す.

4.3 結合モデル

結合モデルでは土地の周辺情報と衛星画像の双方を入力に用いる.結合モデルは 4.2 節の CNN ブロックと 4.1 節の MLP ブロックを組み合わせたモデルである.図4に概要図を示す.入力層は2箇所存在し、衛星画像は CNN ブロックの入力層か ら、土地の周辺情報は MLP ブロックの入力層からモデルへと 入力される.まず CNN ブロックに衛星画像データを入力し、 CNN ブロックの演算を行う.次に CNN ブロックの出力と土 地の周辺情報を結合した特徴ベクトルを生成し、MLP ブロッ クに入力する.MLP ブロックではベクトルの順伝搬が行われ、 出力層にて土地価格の推定値を出力する.

5. 評価実験

評価実験では 4. 章で述べた各推定モデルについて,実デー タセットを用いて推定精度を評価する.

5.1 データセット

実験では大阪府,東京都,および北海道で収集されたデータ セットを用いる.データセットは公示価格データ,土地情報デー タ,および衛星画像データを含む.

5.1.1 公示価格データ

公示価格データは国土交通省が公開している平成 31 年度の 地価公示データ [5] を利用する.大阪府,東京都,北海道に対 してそれぞれ 742 地点,1250 地点,165 地点のデータを収集す る.各都道府県毎の公示価格の平均値,中央値,標準偏差,最 小値,および最大値を表1にまとめる.また,図 5-7 に各都道 府県毎の公示価格のヒストグラムを示す.

図6 東京の土地価格分布

図7 北海道の土地価格分布

表 2 人流の多い地点とした場所の経緯度

都道府県	地名	(緯度,経度)
大阪府	JR 大阪駅	(34.7026, 135.4959)
	大阪府庁	(34.6863, 135.5198)
	関西国際空港	(34.4319, 135.2307)
東京都	JR 東京駅	(35.6814, 139.7671)
	東京都庁	(35.6898, 139.6920)
	羽田空港	(35.5494, 139.7798)
北海道	JR 札幌駅	(43.0686, 141.3507)
	北海道庁	(43.0649, 141.3458)
	新千歳空港	(42.7821, 141.6891)

5.1.2 土地情報データ

土地の周辺情報は公示価格データに対応する各土地における 地積,人流の多い地点までの距離,最寄り駅までの距離,前面 道路の幅員データを利用する.地積,最寄り駅までの距離,お よび前面道路の幅員データは国土交通省が公開しているデー タ[5]を用いる.また,人流の多い地点までの距離は各土地の位 置から大円距離を利用して計算する.なお,実験では各都道府 県毎の人流の多い地点として表2に示される地点を設定する. 表では各地点の都道府県,地名,および経緯度をまとめる.

5.1.3 衛星画像データ

衛星画像は公示価格データに対応する各土地を中心として収 集する.なお,衛星画像はさくらインターネット社が運営する 衛星データプラットフォーム Tellus [6] 上で利用可能なデータ

図 8 衛星画像例 (注3)

を用いる. Tellus では政府の所有する衛星データ,民間の企業・ 研究所が所有する,宇宙から観測した地表のデータを提供して いる.実験では,一般財団法人宇宙システム開発利用推進機構 と NEC が開発した人工衛星 ASNARO-1 によって撮影された マルチスペクトル画像を用いる. ASNARO-1 は 1 ピクセル中 に地表における 2 [m] 四方の情報を写すほどの分解能で撮影す ることができる.

Tellus では衛星画像を独自に分割したタイル形式で提供して いる.タイルの座標は,地点の経緯度を用いて取得できる.実 験で利用する衛星画像データは公示価格に対応する各土地の位 置を中心とし,3×3の計9枚のタイルを組み合わせて作成す る.なお、光学画像の性質上,撮影日時によっては画像に雲や その影が映り込む場合がある.そのような画像は別日時のタイ ルと差し替え,輝度の差が顕著にならないよう前処理を施し衛 星画像データを作成する.また衛星画像データの縮尺として, 作成した画像データにおいて約1.5[km]四方の範囲が映ってい るものを採用する.

5.2 実験設定

5.2.1 前処理

土地情報データは特徴量によって値のスケールが異なるため, 各都道府県毎に全ての土地情報データに対して平均0,標準偏 差1に標準化する.また,正解値である土地価格も値が非常に 大きいことから,土地情報データと同様に標準化する.衛星画 像データは RGB ごとにチャネル分割し,それぞれ平均0.5,標 準偏差0.5の分布に従うよう標準化する.なおデータ容量の削 減を目的として,衛星画像データを推定モデルへ入力する際に は画像の中心部分だけを切り取り,取得時の758×758 ピクセ ルからおよそ3分の1の256×256 ピクセルへとリサイズする. あるデータ X_i に対し,その特徴量の平均を μ ,標準偏差を σ とすると標準化したデータ z_i は式(6)によって導出される.

$$z_i = \frac{x_i - \mu}{\sigma} \tag{6}$$

5.2.2 実験項目

実験では各推定モデルにに対して大阪府,東京都,および北 海道のデータセットを用いて推定精度を比較する.以下に実験 項目の詳細を示す.

(1) MLP モデルによる推定土地情報データのみを用いて MLP モデルによる推定を行う.

表3 各モデルの推定精度(標準化後)

	•i=/ = iii		1 = 12 - 17
データセット	大阪	東京	北海道
MLP モデル	0.249	0.232	0.438
CNN モデル	0.355	0.456	0.680
結合モデル	0.232	0.220	0.455

(2) CNN モデルによる推定

衛星画像データのみを入力として CNN モデルによる推定を 行う.また,データセットの件数が比較的少数であり CNN モ デルが十分に訓練されない可能性があるため,実験では Imagenet [27] で学習済みの重みを初期値として fine-tuning を 行う.

(3) 結合モデルによる推定

土地情報データおよび衛星画像データの双方を入力として結合 モデルにより推定を行う.また,衛星画像データの特徴量を抽 出する CNN 部分は Imagenet で学習済みの重みを初期値とし て fine-tuning を行う.

5.2.3 評価方法およびパラメータ設定

推定精度の評価には平均絶対誤差 (Mean Absolute Error, 以 後 MAE と記す)を用いる.予測値を *f_k*, 真値を *y_k* とすると き MAE は式 (7)で計算される.なお, MAE は値が小さいほ ど推定された土地価格が真の値に近い.また,評価方法として 交差検証を用いる.交差検証では各都道府県毎にデータセット を5等分割し,そのうちの1つをテストデータ,残りの4つを 訓練データする.全組み合わせについて MAE を算出し,その 平均値を最終的な評価値とする.すなわち、各実験ではデータ セットの80%が訓練データ,20%がテストデータである.学習 回数 (epoch 数) はそれぞれ 100 回とし,訓練終了時のテスト データにおける MAE をそれぞれ記録する.

$$MAE = \frac{1}{n} \sum_{k=1}^{n} |f_k - y_k|$$
 (7)

またモデル訓練時の学習率は 0.03 とし,損失関数の最適化 には adam を用いる.

5.3 各モデルの推定精度

表3および表4にそれぞれのデータセットに対する各モデル の推定結果を示す.表3は標準化した公示価格に対する MAE であり,表4は標準化前の公示価格に対応する MAE はである. MLP モデルと比較して結合モデルでは,大阪府で約14%,東 京都で約5%の改善が見られる.また,MLP モデルと比較して CNN モデルの推定精度が劣っていることから,衛星画像単体 を用いた推定では従来の手法を超える貢献は得られないことが 確認できる.一方,北海道を除く大阪府と東京都のデータセッ トでは結合モデルでの推定が最も誤差値の低い結果となってい る.このことから,衛星画像から抽出される特徴が土地価格推 定時の一要素として有効であることを確認できる.

5.4 土地情報と衛星画像の割合に関する検証

結合モデルでは、CNN ブロックによって得られる衛星画像 の特徴量と、測量された土地情報とを結合して特徴ベクトルを 生成する.しかし、画像データはピクセル単位でデータとして

表 4 各モデルの推定精度(標準化前)

データセット	大阪	東京	北海道
MLP モデル	37,519	83,152	78,655
CNN モデル	86,242	298,060	$112,\!100$
結合モデル	31,954	79,288	86,711

表5 衛星画像と土地情報の割合が推定精度に与える影響

1:6 0.234 0.228 0.475 2:6 0.228 0.220 0.455 3:6 0.244 0.291 0.499 6:6 0.310 0.388 0.588 9:6 0.292 0.399 0.566 12:6 0.289 0.410 0.591 MLP モデル 0.249 0.232 0.43	衛星曲像:土地情報	大阪	東京	北海迫
2:6 0.228 0.220 0.455 3:6 0.244 0.291 0.499 6:6 0.310 0.388 0.588 9:6 0.292 0.399 0.566 12:6 0.289 0.410 0.591 MLP モデル 0.249 0.232 0.43	1:6	0.234	0.228	0.475
3:6 0.244 0.291 0.499 6:6 0.310 0.388 0.588 9:6 0.292 0.399 0.566 12:6 0.289 0.410 0.591 MLP モデル 0.249 0.232 0.43	2:6	0.228	0.220	0.455
6:6 0.310 0.388 0.588 9:6 0.292 0.399 0.566 12:6 0.289 0.410 0.591 MLP モデル 0.249 0.232 0.43	3:6	0.244	0.291	0.499
9:6 0.292 0.399 0.566 12:6 0.289 0.410 0.591 MLPモデル 0.249 0.232 0.43	6:6	0.310	0.388	0.588
12:6 0.289 0.410 0.591 MLP モデル 0.249 0.232 0.43	9:6	0.292	0.399	0.566
MLPモデル 0.249 0.232 0.43	12:6	0.289	0.410	0.591
	MLP モデル	0.249	0.232	0.438

表 6	画像サイス	ヾが推定粘	青度に与え	える影響
	- 14- 11 - A - M	1.00-	-+	11. 24-224

768×768	0.323	0.419	0.649
512×512	0355	0.448	0.662
$256{\times}256$	0.355	0.456	0.680
留生回塚リイス			北伊坦

数値データ化されるため,畳み込み時のカーネルサイズやプー リングの粒度により得られる特徴量のサイズが刻々と変動する. そのため,生成する特徴ベクトル内の画像特徴量と土地情報と の割合が偏る場合,どちらかの影響が無視あるいは相殺される 可能性がある.そこで,特徴ベクトル内の画像特徴量と土地情 報との割合の変化に伴って土地価格推定の精度が変化するかど うかを検証する.実験では各データセットに対して,結合モデ ルの CNN ブロックにおいて最終層の出力の次元数を変化させ る.なお,結合する土地の周辺情報の次元数は6 で固定である ことから,衛星画像の特徴ベクトルの次元数はその2 倍の値を 上限とする.

表5は土地情報ベクトルの次元数と画像特徴量のベクトル次 元数の割合毎の結合モデルの推定結果である.特徴ベクトルに おいて,衛星画像の特徴量が1/3以下の時に,土地の周辺情報 のみを用いる MLP モデルよりも推定精度が高くなる.すなわ ち,衛星画像の特徴量に対して土地の周辺情報数が2倍を超え ない範囲であれば衛星画像は土地価格推定に対して有効である.

5.5 衛星画像のサイズと土地価格推定の精度に関する検証

本実験では,計算量削減のために衛星画像のサイズを縮小し て実験を行っている.しかし衛星画像のリサイズによって画像 中の特徴が失われている可能性がある.そこで,CNN モデル を用いて画像サイズの変動が土地価格推定の精度に与える影響 を検証する.土地を中心として同じ広域を写している衛星画像 をそれぞれ 256×256,512×512,768×768 ピクセルの3種類 ずつ用意し,それぞれのサイズ毎に推定を行う.なお,データ セット中の衛星画像は元サイズが 768×768 であるため,画像 の拡張はしておらず,縮小のみの検証となる.

表6に衛星画像のサイズ毎の実験結果を示す.画像サイズが 768×768の時に推定精度が最も高くなることから,衛星画像の 縮小によって土地を表現する画像特徴量が削減されていること

表 7 データ数が推定精度に与える影響

データセット	大阪		東京		北海道
件数	742	165	1250	165	165
MLP モデル	0.249	0.253	0.232	0.237	0.438
CNN モデル	0.355	0.364	0.456	0.459	0.680
結合モデル	0.232	0.262	0.220	0.231	0.455

がわかる.そのため,できる限り詳細な衛星画像を用いた方が, 土地価格を高精度に予測することが可能である.

5.6 北海道のデータセットにおける低精度の原因分析

5.3 では北海道のデータでのみ,結合モデルの精度が MLP モデルの精度を下回っている.表1からわかるように北海道の データ数は大阪,東京と比較して極めて少なく,学習が十分に 行われていないことが予想される.そこで,大阪,東京のデー タ数を北海道のデータ数と同じ 165 に揃えて再度同様の実験を 行い,データ数と推定精度の関係について検証する.

表7に訓練データ数を小さくした場合の実験結果を示す.表7 より,データ数が減少した場合に全体的にどのモデルも推定性 能は悪化している.大阪のデータセットでは結合モデルの性能 が MLP モデルを下回っている.しかし,データ数を揃える前 と比較しても北海道のデータほど MAE 値は高いわけではない. したがって,モデルの訓練においてデータ数が過小であること は学習性能に影響を与えてはいるが,北海道のデータセットだ け結合モデルの性能が劣る直接の原因とは断定できない.他の 原因の可能性として,北海道は大阪および東京と比較して面積 が広いため,より多くのデータが必要とある可能性がある.

6. まとめ

本稿では、土地価格推定に対する衛星画像の有効性について 検証した.推定モデルとして土地情報データのみを利用する MLPモデル、衛星画像データのみを利用する CNN モデル、お よび土地情報データと衛星画像データの双方を利用する結合モ デルを用い、各モデルの推定精度を比較した.実験結果より、 土地の周辺情報だけを用いた推定モデルと比較して衛星画像と 土地の周辺情報を併用するモデルの性能が大阪、東京の二つの データセットにおいて向上することが確認された.このことか ら衛星画像が土地価格予測への有効であることを示した.

今後の課題としては、地域性に左右されない推定モデルの作 成が挙げられる.検証実験では、東京・大阪のデータセットで 結合モデルの推定精度の向上が見られたのに対して北海道の データセットでは衛星画像を使用しない推定モデルに性能で及 ばなかった.これは北海道の地域性を衛星画像から十分に学習 できなかったことが懸念される.本稿では ImageNet で 1000 クラス分類した際の ResNet の重みを元に学習を始めた.これ を、例えば植生を表す画像内の緑色のピクセル数の大小で二値 分類するなど地域性に特化した学習に代替する.このような訓 練済みモデルを土地価格推定に用いることで、地域性を考慮し た価格推定が可能になると考えられる. 本研究は科学研究費(16H01722)の支援,および株式会社 さくらインターネットより提供いただいた GPU サーバ環境を 利用して行われた.ここに記して謝意を表す.

献

文

- Sherwin Rosen. Hedonic prices and implicit markets : Product differentiation in pure competition. *Journal of Political Economy*, Vol. 82, No. 1, pp. 34–55, 1974.
- [2] Steven C. Bourassa, Eva Cantoni, and Martin Edward Ralph Hoesli. Spatial dependence, housing submarkets, and house price prediction. *The Journal of Real Estate Finance and Economics*, Vol. 35, No. 2, pp. 143–160, 2007.
- [3] V. Sampathkumar, M. Helen Santhi, and J. Vanjinathan. Forecasting the land price using statistical and neural network software. *Proceedia Computer Science*, Vol. 57, pp. 112–121, 2015.
- [4] Archith J. Bency, Swati Rallapalli, Raghu K. Ganti, Mudhakar Srivatsa, and B. S. Manjunath. Beyond spatial autoregressive models: Predicting housing prices with satellite imagery. In *Proceedings of the IEEE WACV*, pp. 320–329, 2017.
- [5] 国土交通省国土数値情報ダウンロードサービス.http://nlftp. mlit.go.jp/ksj/gml/datalist/KsjTmplt-L01-v2_5.html.
- [6] Telus Open & Free Platform. https://www.tellusxdp.com/ ja/.
- [7] Shougeng Hu, Shengfu Yang, Weidong Li, Chuanrong Zhang, and Feng Xu. Spatially non-stationary relationships between urban residential land price and impact factors in wuhan city, china. *Applied Geography*, Vol. 68, pp. 48–56, 2016.
- [8] 荒川周造, 諏訪博彦, 小川祐樹, 荒川豊, 安本慶一, 太田敏澄. 暗 黙知センシングに基づいた飲食店向き不動産店舗の賃料推定. 人 工知能学会全国大会論文集, Vol. JSAI2017, pp. 1H2OS15a3-1H2OS15a3, 2017.
- [9] 福井光, 阪井一仁, 南村忠敬, 三尾順一, 木下明弘, 司郎. レインズ のニューラルネットワークを用いた不動産価格査定について.人 工知能学会全国大会論文集, Vol. JSAI2018, pp. 4A203–4A203, 2018.
- [10] Steven Peterson and Albert B. Flanagan. Neural Network Hedonic Pricing Models in Mass Real Estate Appraisal. *Journal of Real Estate Research*, Vol. 31, No. 2, pp. 147– 164, 2009.
- [11] Jasmina Cetkovic, Slobodan Lakić, Marijana Lazarevska, Miloš Žarković, Saša Vujošević, Jelena Cvijović, and Mladen Gogić. Assessment of the real estate market value in the european market by artificial neural networks application. *Complexity*, Vol. 2018, pp. 1–10, 2018.
- [12] Byeonghwa Park and Jae Kwon Bae. Using machine learning algorithms for housing price prediction: The case of fairfax county, virginia housing data. *Expert Systems with Applications*, Vol. 42, pp. 2928–2934, 2015.
- [13] Lipo. Wang, Fung. F. Chan, Yaoli. Wang, and Qing. Chang. Predicting public housing prices using delayed neural networks. In *Proceedings of the IEEE TENCON*, pp. 3589– 3592, 2016.
- [14] Mohammad Hossein Rafiei and Hojjat Adeli. A novel machine learning model for estimation of sale prices of real estate units. *Journal of Construction Engineering and Management*, Vol. 142, No. 2, p. 04015066, 2016.
- [15] Junhan Zhao, Xiang Liu, Yanqun Kuang, Yingjie V. Chen, and Baijian Yang. Deep cnn-based methods to evaluate neighborhood-scale urban valuation through street scenes perception. In *Proceedings of the IEEE DSC*, pp. 20–27, 2018.
- [16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In *Proceedings* of the IEEE CVPR, pp. 770–778, 2016.

- [17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. In *Proceedings* of the Springer ECCV, pp. 630–645, 2016.
- [18] Quanzeng You, Ran Pang, Liangliang Cao, and Jiebo Luo. Image-based appraisal of real estate properties. *IEEE Transactions on Multimedia*, Vol. 19, No. 12, pp. 2751–2759, 2017.
- [19] Rethinking the inception architecture for computer vision. 2016.
- [20] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. In *Proceedings of the ICLR*, 2015.
- [21] Zachary Bessinger and Nathan Jacobs. Quantifying curb appeal. In *Proceedings of the IEEE ICIP*, pp. 4388–4392, 2016.
- [22] Davide Belli and Thomas Kipf. Image-conditioned graph generation for road network extraction. arXiv preprint arXiv:1910.14388, 2019.
- [23] Neal Jean, Marshall Burke, Michael Xie, W. Matthew Davis, David B. Lobell, and Stefano Ermon. Combining satellite imagery and machine learning to predict poverty. *Science*, Vol. 353, pp. 790–794, 2016.
- [24] 三浦英俊. 緯度経度を用いた 3 つの距離計算方法 (特集 or と数 学・統計). オペレーションズ・リサーチ, Vol. 60, No. 12, pp. 701–705, 2015.
- [25] Zhi Yang, Wei Yu, Pengwei Liang, Hanqi Guo, Likun Xia, Feng Zhang, Yong Ma, and Jiayi Ma. Deep transfer learning for military object recognition under small training set condition. *Neural Computing and Applications*, Vol. 31, No. 10, pp. 6469–6478, 2019.
- [26] Zheng-Wu Yuan and Jun Zhang. Feature extraction and image retrieval based on AlexNet. In *Proceedings of the SPIE ICDIP*, pp. 65 – 69, 2016.
- [27] Jia Deng, Wei Dong, Richard Socher, Li-Jia. Li, Kai Li, and Li Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In *Proceedings of the IEEE CVPR*, pp. 248–255, 2009.