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ABSTRACT
Network reliability is an important metric to evaluate the con-

nectivity among given vertices in uncertain graphs. Since the

network reliability problem is known as #P-complete, existing

studies have used approximation techniques. In this paper, we

propose a new sampling-based approach that efficiently and

accurately approximates network reliability. Our approach im-

proves efficiency by reducing the number of samples based on

the stratified sampling. We theoretically guarantee that our ap-

proach improves the accuracy of approximation by using lower

and upper bounds of network reliability, even though it reduces

the number of samples. To efficiently compute the bounds, we

develop an extended BDD, called S2BDD. During constructing

the S
2
BDD, our approach employs dynamic programming for

efficiently sampling possible graphs. Our experiment with real

datasets demonstrates that our approach is up to 51.2 times faster

than existing sampling-based approach with a higher accuracy.

1 INTRODUCTION
To understand and design our world, we need to model and an-

alyze relationships between objects. Objects and relationships

can be modeled by a graph, whose vertices and edges represent

the objects and the relationships, respectively. Graph analysis is

widely used in many domains, and the reachability [8, 34, 37] and
network reliability [5, 10, 33] are the fundamental research top-

ics in graph analysis. Reachability techniques compute whether

there are paths between two terminals (i.e., given vertices). On the
other hand, network reliability techniques compute a probability

that all pairs of terminals are connected in uncertain graphs. In an

uncertain graph, each edge is associated with an edge existence
probability to quantify the likelihood that the edge exists in the

graph. Network reliability is more generalized than reachability

in terms of two aspects (1) a probabilistic value (the reachability

is binary) and (2) the number of terminals. Thus, network relia-

bility techniques have two benefits over reachability techniques.

First, we can handle the inherent uncertainty of relationships

in the real-world by modeling the uncertainty as the edge exis-

tence probability [1, 23]. Second, we can flexibly specify arbitrary

numbers of terminals. From the above two benefits, the network

reliability can be widely used for the uncertain graph analysis

[6, 36] and many practical applications [20]. For example, protein-

protein interaction networks can be modeled by uncertain graphs

since protein interactions are not always established due to the

sensitivity to conditions [4, 17]. In such protein-protein interac-

tion networks, analysts evaluate the network reliability among

several proteins as the strengths of the relationships to elucidate
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Figure 1: Uncertain graph

the functions of proteins. The network reliability is also used

in many domains such as communication networks [5, 29] and

urban planning [13].

Unfortunately, the computation cost of the network reliability

is significantly large because it is #P-complete problem [33]. The

high complexity of #P-complete is caused by the fact that the

computation of the network reliability inherently requires to enu-

merate all possible graphswhich have the same set of vertices and

an arbitrary subset of the edges without their probabilities. Each

possible graph has its probability computed from the existence

probabilities of its edges. A set of possible graphs is logically

equivalent with its original uncertain graph. To compute the

network reliability, we sum up the probabilities of all possible

graphs in which all the terminals are connected.

We explain an example of computation of the network relia-

bility by using Figure 1. This figure shows an original uncertain

graph and three examples of its possible graphs. The black ver-

tices represent terminals. Let us assume that each edge has 0.7

as its existence probability. Since these possible graphs have four

existent and two non-existent edges, their probabilities are 0.0216

(i.e., 0.74 · (1 − 0.7)2). All these terminals are connected only in

the left and middle possible graphs. Thus, their probabilities are

added to the network reliability.

Problem Definition and Technical Overview
We approximate the network reliability since the computation

cost of the network reliability is significantly large due to #P-

complete problem. In this paper, we consider the problem of

computing the approximate network reliability by sampling. We

formally define the problem as follows.

Problem definition: (Approximate network reliability). Given
an uncertain graph G, a set of terminals T, and the number of

samples s , we efficiently compute the approximate network reli-

ability R̂[G,T].

The computation cost of sampling becomes considerable as

the number of samples increases. To efficiently approximate the

network reliability, we reduce the number of samples with keep-

ing a high accuracy. Our challenges are (1) how to reduce the

number of samples with a theoretical guarantee of the accuracy

and (2) how to practically achieve the theoretical results from

the first challenge. As for the first challenge, we extend the strat-
ified sampling [32], which increases the accuracy of an estimated

value by using the lower and upper bounds of the value. We first
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prove a theorem that we reduce the number of samples without

sacrificing the accuracy of approximation.

We can reduce the number of samples in accordance with the

theoretical results. The theoretical results have two requirements;

(1) to efficiently compute the approximate network reliability, we

need to efficiently obtain the tight lower and upper bounds of

the network reliability and (2) to guarantee the approximation

of accuracy, we need to sample possible graphs from the set of

possible graphs that are not used to compute the bounds. There

are no trivial techniques to effectively achieve them. Therefore,

we develop an extended binary decision diagram, which we call

scalable and sampling BDD (S2BDD for short). The S
2
BDD enables

preferentially searching for possible graphs in which terminals

are connected/disconnected. The connected and disconnected

possible graphs are used for computing the lower and upper

bounds. Our approach employs dynamic programming during

constructing the S
2
BDD for efficiently sampling the possible

graphs. It enables avoiding sampling possible graphs from the

set of possible graphs that are used to compute the bounds.

Furthermore, our approach becomes more efficient by reduc-

ing the size of graphs. Thus, we propose an extension technique

of our approach which uses 2-edge connected components [7].

The extension technique prunes vertices and edges that do not

affect the network reliability, decomposes the graph to several

subgraphs, and transforms the subgraphs into a smaller graphs.

It efficiently reduces the vertices and edges involved in the com-

putation while preserving the network reliability.

Contributions and Organization
To the best of our knowledge, our approach is the first solution

to achieve both high efficiency and accuracy to compute the

network reliability. Our approach has the following attractive

characteristic.

• Our approach improves the efficiency to compute an ap-

proximate network reliability by reducing the number of

samples. The extension technique effectively reduces the

size of graphs while preserving the network reliability.

• Our approach outputs more accurate network reliability

than the existing approaches. We theoretically guarantee

that our approach improves the accuracy of approxima-

tion, even though it reduces the number of samples.

• Our approach computes the exact answer for small-scale

graphs due to the S
2
BDD though the existing sampling-

based approach cannot compute the exact answer.

• Our approach can be used to improve the performances

on uncertain graph analyses [6, 18, 22] in terms of both

accuracy and efficiency because many algorithms compute

the network reliability by sampling techniques.

The remainder of this paper is organized as follows. Section 2

introduces related work. Section 3 then describes the prelimi-

naries. Sections 4 and 5 present our approach and an extension

technique for our approach, respectively. Section 6 describes al-

gorithms of our approach with the extension. Section 7 shows the

results obtained from the experiments, and Section 8 concludes

the paper.

2 RELATEDWORK
Querying and mining uncertain graphs have recently attracted

much attention in the database and data mining research com-

munities. We review some relevant works related to the network

reliability problem.

Network reliability: For computing the network reliabil-

ity, several approaches have been proposed such as cut-based

approach and BDD-based approach. The cut-based [3, 15, 25]

approach enumerates all cuts which are divides the terminals

and then computes the network reliability by using the set of cuts.

Harris and Srinivasan [15] proposed theoretical result to obtain

the lower bound of network relaibility based on cuts. However,

they do not mention how to efficiently obtain the cuts. The BDD-

based approach is more efficient than the cut-based approach.

The BDD-based approach [14, 26, 35] effectively avoids enumer-

ating all possible graphs without sacrificing the exactness of the

network reliability. However, it cannot be applicable to large

graphs due to the large memory usage. The BDD-based approach

first constructs a BDD, and then obtains the possible graphs in

which terminals are connected by traversing the BDD. Recent

work has shown that the BDD-based approach can be applied

only to graphs with 100–200 edges because of limitations of mem-

ory space [14, 26]. The state-of-the-art library TdZDD
1
also can

only be applied to very small-scale graphs. Herrmann and Soh

[16] proposed a memory-efficient BDD that computes the net-

work reliability by constructing a BDD and deleting unnecessary

parts of it during the process. We partially adopt their idea to

reduce the memory usage. There are several preprocessing and

indexing techniques to efficiently compute the network reliability

(and similar problems) [12, 24]. These techniques remove redun-

dant parts of graphs, which have similar idea of our extension

technique. However, these techniques cannot directly apply to

k-terminal reliability. To the best of our knowledge, there has

been no prior work on approximating the network reliability

with BDD.

Reachability query in uncertain graphs: The reachability
in uncertain graphs is a special type of network reliability (called

s-t network reliability) [2]. Jin et al. [19] proposed a distance-

constraint reachability query in uncertain graphs, which answers

the probability that the distance from one vertex to another is

less than or equal to a threshold. They proposed approximate

algorithms as solutions to this problem. The approximate al-

gorithms use unequal sampling techniques [31], and achieves

higher accuracy than Monte Carlo sampling. Cheng et al. [9]

proposed an algorithm to compute the reachability in distributed

environments. The algorithm reduces the size of graphs without

sacrificing the exactness of the result before computing the reach-

ability. It divides the graph into several subgraphs and computes

probabilities of the subgraphs in distributed environments. The

algorithm is only applicable to directed acyclic graphs. While

these algorithms [9, 19] deal with uncertain graphs, their objec-

tive is to compute reachability and their algorihms cannot be

applied to computing the network reliability.

Other problems with uncertain graphs: Many existing

works in uncertain graphs use the network reliability as the met-

ric to evaluate the connectivity among vertices. The efficiency

and accuracy of their algorithms depend on those of the sam-

pling techniques. Although they use the sampling technique to

compute the network reliability, they have not proposed efficient

sampling techniques. Jin et al. [18] proposed an algorithm for

finding reliable subgraphs in which the vertices are connected

with a higher probability than a given threshold. Ceccarello et

al. [6] proposed clustering techniques for uncertain graphs. The

technique uses the network reliabilities between vertices as dis-

tances between them. Khan et al. [22] proposed a reliability search

1
https://github.com/kunisura/TdZdd
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Table 1: Notations

Symbol Meaning

G Uncertain graph

V Set of vertices

E Set of edges e = (v,v ′)
p(e) Edge existence probability of e
Gp Possible graph

Ep Set of edges in Gp
Pr [Gp ] Existence probability of Gp
GE Intermediate graph

E∃ Set of existent edges in GE
E¬ Set of non-existent edges in GE
Pr [GE] Existence probability of GE
T Set of terminals

R[G,T] Network reliability of G for T

R̂[G,T] Approximate network reliability of G for T
k The number of terminals

w Maximum size of BDD

Fl Set of frontiers at layer l
| · | The number of elements in a set

that returns a set of vertices that are connected from given ver-

tices with a higher probability than the threshold. These studies

have different purposes, but they use the Monte Carlo sampling

to compute the network reliability. Our approach can be used

to improve their performances in terms of both accuracy and

efficiency instead of using the Monte Carlo sampling.

3 PRELIMINARIES
As preliminaries of our approach, we explain uncertain graph

and network reliability. Table 1 summarizes the notations.

3.1 Uncertain graph
Let G = (V,E,p) be a connected and undirected uncertain graph,

where V is a set of vertices, E ⊆ V×V is a set of uncertain edges,

andp : E→ (0, 1] is a function that determines the edge existence

probability p(e) of uncertain edge e ∈ E in the graph. We denote

edge e ∈ E between v and v ′ as e = (v,v ′). A state of uncertain

edge e is existent with a probability p(e) or non-existent with a

probability (1−p(e)). We assume that edge existence probabilities

of different edges are independent of one another [6, 19].

A possible graphGp = (V,Ep ) is a graph that contains a set of

vertices and a subset of edges of G without their edge existence

probabilities. Edges in E\Ep are non-existent in the possible

graph. Although edges in possible graphs have no probabilities,

the possible graphs themselves have existent probabilities. The

existent probability Pr [Gp ] of possible graph Gp is as follows:

Pr [Gp ] =
∏

e ∈Ep p(e) ·
∏

e ∈E\Ep (1 − p(e)).

The total number of the possible graphs of G is 2
|E |

because

each edge is either existent or non-existent. We defineWG as all

possible graphs obtained from G.

We define an intermediate graph GE(E∃,E¬), which is an un-

certain graph with the set of existent edges E∃, the set of non-
existent edgesE¬, and the set of uncertain edgesE\(E∃∪E¬). The
existent probability Pr [GE(E∃,E¬)] of the intermediate graph

GE(E∃,E¬) is as follows:

Pr [GE(E∃,E¬)] =
∏

e ∈E∃ p(e) ·
∏

e ∈E¬ (1 − p(e)).

We simply use Pr [GE] as Pr [GE(E∃,E¬)]. We defineWGE as all
possible graphs obtained from GE. The total number of the possi-

ble graphs of GE(E∃,E¬) is 2 |E\(E∃∪E¬) | . We define that vertices

are connected in intermediate graphs if there are paths among

the vertices by existent edges, and vertices are disconnected if

there are no paths among the vertices by existent and uncertain

edges. Note that it is unsure to be connected or disconnected

even if there are paths among the vertices by uncertain edges.

3.2 Network reliability
The network reliability is computed by summing up the proba-

bilities of all possible graphs in which all terminals (a subset of

vertices) are connected. The definition is as follows:

Definition 1 (Network reliability). Given a set of k termi-
nals T and an uncertain graph G, the network reliability R[G,T]
is

R[G,T] =
∑
Gp ∈WG

I (Gp ,T) · Pr [Gp ], (1)

where Gp denotes a possible graph, and I (Gp ,T) is an indicator
function that returns one if all terminals in T are connected in Gp ,
and returns zero, otherwise.

We denote by R̂[G,T] the approximate network reliability. We

simply use R and R̂ as R[G,T] and R̂[G,T] for the given uncertain
graph and terminals, respectively.

The network reliabilitywithk terminals is called thek-terminal
reliability, and it is known as the most generalized network relia-

bility [14]. The network reliability problem is #P-complete [33].

Planar graphs can be more efficiently solved than general graphs,

but it is also #P-complete [30]. Therefore, it has no polynomial

time algorithm unless P = NP .
BDD [14] and sampling [19] are main techniques to compute

the network reliability. BDD-based approach can compute the ex-

act answer in small-scale graphs, while sampling-based appraoch

can compute approximate answers in large-scale graphs.

3.2.1 Binary decision diagram. A BDD D = (N,A) is a di-

rected acyclic graph with sets of nodes N and arcs A2. Figure 2(a)
shows the BDD to compute the network reliability of the original

graph in Figure 1. Nodes in the BDD correspond to intermediate

graphs, and arcs in the BDD correspond to existent/non-existent

edges. The BDD has a single node that has no incoming arcs,

called the root node (node G1 in Figure 2(a)). Each node has two

outgoing arcs, called the 0-arc and 1-arc (represented by dashed

and solid arrows in Figure 2(a), respectively). 0-arcs and 1-arcs

indicate that edges are non-existent and existent in the uncertain

graph, respectively. Each arc is associated with a weight that rep-
resents the existent or non-existent probability of the edge. We

define layer l (≥ 1) as the depth from the root node. The nodes at

layer l of the BDD correspond to the intermediate graphs whose

edges e1, . . . , el−1 are existent/non-existent and the other edges

el , . . . , e |E | are uncertain. The BDD has special nodes that have

no outgoing arcs, called sink nodes. The sink nodes are of two

types, called 1-sink and 0-sink (represented by rectangles with

labels 1 and 0 in Figure 2(a), respectively). If the terminals in

the intermediate graph are connected and disconnected, the arcs

point at the 1-sink and 0-sink, respectively. We can obtain inter-

mediate graphs in which terminals are connected by traversing

the BDD from the root node to the 1-sink.

2
To avoid confusion, we use the terms “vertex” and “edge” to refer to a vertex and

an edge in an uncertain graph, respectively, and “node” and “arc” to refer to a vertex

and an edge in a BDD, respectively.
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Figure 2: BDD for the original graph on Figure 1(a).

To construct the BDD, the frontier-based method is a common

procedure [21, 26]. This method first orders edges (e1, . . . , e |E |).
It generates the nodes on layer l + 1 by setting the states of el
when a BDD is already constructed until layer l . In the frontier-

based method, a vertex that has both existent/non-existent and

uncertain edges are called a frontier f , and we denote by Fl the
set of frontiers at layer l . Figure 2(b) shows intermediate graphs

after processing e1 and e2, where solid black, dashed black, and

dashed gray lines denote existent, non-existent, and uncertain

edges, respectively. These intermediate graphs correspond to G4,

G5, andG6 in the BDD from the top, respectively. Vertices b and

c are frontiers because they have both existent/non-existent and

uncertain edges. Note that nodes at the same layer l have the same

set of frontiers Fl . The frontier-based method maintains several

attributes on only the frontiers (e.g., the number of uncertain

edges and the number of terminals connected to the frontiers). It

merges the nodes if the attributes are the same. Thus, the frontier-

based method can effectively reduce the number of nodes.

The size of the BDD is defined by the number of nodes in the

BDD [14]. Generally, it exponentially increases as the number of

edges in the uncertain graphs increases. As the size of the BDD

increases, both of the computation cost and the memory usage

increase. Thus, it is hard to compute the exact network reliability.

3.2.2 Sampling. Sampling is a basic approach for computing

the approximate network reliability [9, 18, 19]. Given the number

of samples s , the sampling-based approach repeats the following

procedures s times: (1) picking a possible graph of G as a sample,

Gpi (1 ≤ i ≤ s) according to the probabilities Pr [Gpi ] fromW
G

and then (2) computingwhether all the terminals are connected or

not inGpi . The time complexity of the sampling-based approach

is O(s · (|V| + |E|)). This is because it requires O(|E|) time to

determine the states of all edges andO(|V|+ |E|) time to compute

the connectivity by a depth first search for each sample.

The accuracy of the sampling-based approach is evaluated by

its variance. Since the sampling-based approach is a randomized

algorithm [28], the average network reliability is most likely to be

closest to the exact network reliability. A small variance indicates

a small rate of error (i.e., high accuracy). Note that unbiased
sampling is necessary that samples possible graphs according

to their probabilities for guaranteeing the theoretical variance.

As the number of samples increases, the variance decreases but

the computation cost increases. Therefore, there is a trade-off

between the accuracy and the computation cost.

The stratified sampling is known as a successful method in

the field of statistics [32]. The stratified sampling divides the

population into subgroups and individually picks samples from

each subgroup. The variance of the estimated value for the whole

population are the sum of the variances of the estimated values

for individual subgroups. Let L be the number of subgroups and

Ri be the estimated total probabilities of possible graphs for

subgroup i . The estimated network reliability is computed by

summing up the total probabilities for the subgroups as follows:

R̂ =
∑L
i=1 R̂i .

The variance is the sum of the individual variances for the sub-

groups as follows:

Var [R̂] =
∑L
i=1Var [R̂i ].

When we compute the exact values for the subgroups, the vari-

ances of the estimated network reliability for the subgroup be-

come zero. Thus, when we compute the exact values for the

subgroups, the variance of the estimated network reliability for

the whole population decreases.

4 OUR APPROACH
In this paper, we solve the problem of the approximate network

reliability. Section 4.1 provides an overview of our approach.

Section 4.2 explains how to reduce the number of samples. Section

4.3 presents our extended BDD S
2
BDD.

4.1 Overview
Our approach efficiently and accurately computes the approxi-

mate network reliability. We achieve high efficiency and accuracy

with the following ideas:

• Reduction of the number of samples: Our approach
significantly reduces the number of samples with keeping

a high accuracy of approximation by using the lower and

upper bounds of the network reliability.

• Efficient computation of the bounds of network re-
liability: We develop the S

2
BDD to efficiently compute

the bounds of the network reliability.

• Dynamic programming: During constructing S
2
BDD,

we employ dynamic programming for efficiently sampling

possible graphs.

Our approach reduces the number of samples in accordance

with the stratified sampling. We theoretically guarantee that the

number of samples becomes small as the lower and upper bounds

become tight without sacrificing the accuracy of approximation.

We prove it in two representative estimators; Monte Carlo and

Horvitz-Thompson estimators [32].

For achieving the theoretical result, we compute the lower

and upper bounds by constructing the S
2
BDD. We specify the

maximum sizew of S
2
BDD for avoiding a large cost to construct

the S
2
BDD. Our approach deletes nodes on the S

2
BDD when its

size exceedsw . To effectively delete nodes, we define a heuristic

function for preferentially keeping high-priority nodes in the

S
2
BDD; the priorities are computed from the possibilities of im-

proving the bounds. The S
2
BDD enables efficiently computing

the bounds because nodes preferentially point at sink nodes.

For efficiently sampling possible graphs, our approach employs

dynamic programming during constructing the S
2
BDD. We can

straightforwardly employ dynamic programming for sampling

because sampling possible graphs from intermediate graphs is

a sub problem of sampling possible graphs from the original

uncertain graph. We also use the stratified random sampling for
determining the number of samples for each sub problem. The
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stratified random sampling divides the set of possible graphs into

subgroups and samples possible graphs from each subgroup.

4.2 Reducing the number of samples
In this section, we theoretically prove that our approach reduces

the number of samples while keeping a high accuracy in accor-

dance with the stratified sampling [11, 27]. As we mentioned

in Section 4.3.3, the accuracy of sampling is evaluated by the

variance of the estimated network reliability. Since the stratified

sampling reduces the variance of the estimated network reliabil-

ity, we can reduce the number of samples without sacrificing the

accuracy of approximation.

To apply the stratified sampling, we divide the set WG of

possible graphs into three subgroupsWGc ,WGd , andWGu .WGc and

WGd include the sets of only possible graphs in which terminals

are connected and disconnected, respectively.WGu includes the

set of possible graphs that are not included inWGc andWGd . Let

pc and pd be the sum of the probabilities of possible graphs in

WGc andWGd , respectively. Hence, from Definition 1, the upper

and lower bounds are given as follows:

R =
∑
Gp ∈W

G
c
Pr [Gp ] +

∑
Gp ∈W

G
u
I (Gp ,T)Pr [Gp ]

= pc +
∑
Gp ∈W

G
u
I (Gp ,T)Pr [Gp ]

≥ pc .

R = 1 −
∑
Gp ∈W

G

d
Pr [Gp ] −

∑
Gp ∈W

G
u
(Pr [Gp ] − I (Gp ,T)Pr [Gp ])

= 1 − pd −
∑
Gp ∈W

G
u
(Pr [Gp ] − I (Gp ,T)Pr [Gp ])

≤ 1 − pd .

Consequently, we have pc ≤ R ≤ 1 − pd . We reduce the number

of sample by using the lower bound pc and upper bound 1 − pd .
The variance also depends on estimators. In our approach, we

exploit two representative estimators; Monte Carlo estimator and

Horvitz-Thompson estimator. The Monte Carlo estimator is a

basic technique for computing the average values of the samples.

On the other hand, the Horvitz-Thompson estimator is unequal

probability estimator, which provides smaller variance than the

Monte Carlo estimator under sampling without replacement.

We explain how to reduce the number of samples in the two

estimators with keeping a high accuracy.

Monte Carlo estimator: The Monte Carlo estimator for R is:

R̂ =
∑s
i=1 I (Gpi ,T)

s .

The variance is computed by the following equation [11]:

Var [R̂] = R(1−R)
s .

Because the random sampling is unbiased, i.e., E(R̂) = R, the
variance can be simply written as follows [27]:

Var [R̂] = R(1−R)
s ≈

R̂(1−R̂)
s . (2)

LetVar [R̂]′ be the variance using the upper and lower bounds.
Var [R̂]′ is computed in accordance with the stratified sampling

as follows [11, 27]:

Var [R̂]′ =
(R̂−pc )(1−pd−R̂)

s . (3)

From Equations (2) and (3), we obtain the following equation:

R̂(1−R̂)
s ≥

(R̂−pc )(1−pd−R̂)
s . (4)

Therefore, we have Var [R̂] ≥ Var [R̂]′. From Equation (4), we

obtain the following theorem:

Theorem 1. Given the number of samples s , the lower bound
pc , and the upper bound 1 − pd , the variance of network reliability
by using Monte Carlo estimator with s ′ (≤ s) samples is less than
and equal to that with s samples if s ′ is computed by the following
equations:

s ′ =



⌊s(1 − pd )⌋ . (pc = 0)

⌊s(1 − pc )⌋ . (pd = 0)

⌊s(1 − 4 · pc (1 − pc ))⌋ . (pc = pd )

⌊s(1 − 4 · pc (1 − pd ))⌋ . (pc < pd )

⌊s(1 −min(4pc (1 − pc ),

4(pc (1 − pd ) + (pd − pc )))⌋ . (pc > pd )

Proof: From Equation (4), we have the following equation such

that the variance with s samples is equal to that with s ′ samples

by using the lower and upper bounds:

(pc−R̂)(1−pd−R̂)
s ′ =

R̂(1−R̂)
s

Then, s ′ is computed as follows:

s ′ = s ·
(R̂−pc )(1−pd−R̂)

R̂(1−R̂)

= s ·

(
1 −

pc (1−R̂)+pd (R̂−pc )
R̂(1−R̂)

)
(5)

However, we cannot compute R̂ before sampling s possible graphs.
Therefore, we remove R̂ from Equation (5) by dividing the pat-

terns of pc and pd . First, if pc = 0, s ′ is computed as follows:

s

(
1 −

pd R̂
R̂(1−R̂)

)
≤ s(1 − pd ).

s ′ = ⌊s(1 − pd )⌋ .

Second, if pd = 0, s ′ is computed as follows:

s

(
1 −

pc (1−R̂)
R̂(1−R̂)

)
≤ s(1 − pc ).

s ′ = ⌊s(1 − pc )⌋ .

Third, if pc = pd , s
′
is computed as follows:

s

(
1 −

pc (1−R̂)+pc (R̂−pc )
R̂(1−R̂)

)
≤ s(1 − 4pc (1 − pc )). (6)

s ′ = ⌊s(1 − 4pc (1 − pc ))⌋ .

In Equation (6), the maximum value of R̂(1 − R̂) is 0.25. Thus, we
substitute 0.25 for R̂(1− R̂) in the denominator. Fourth, if pc < pd ,
s ′ is computed as follows:

s

(
1 −

pc (1−R̂)+pd (R̂−pc )
R̂(1−R̂)

)
≤ s(1 − 4pc (1 − pd )).

s ′ = ⌊s(1 − 4pc (1 − pd ))⌋ .

Finally, if pc > pd , s
′
is computed as follows:

s

(
1 −

pc (1−R̂)+pd (R̂−pc )
R̂(1−R̂)

)
≤ s(1 − 4pc (1 − pc )).

s

(
1 −

pc (1−R̂)+pd (R̂−pc )
R̂(1−R̂)

)
≤ s(1 − 4(pc (1 − pc ) + (pd − pc )).

s ′ = ⌊s(1 −min(4pc (1 − pc ), 4(pc (1 − pd ) + (pd − pc ))))⌋ . (7)

In Equation (7), the minimum s ′ depends on the values of pc and

pd . Consequently, we have that s
′ ≤ s for all patterns of pc and

pd . □

Horvitz-Thompson estimator: The Horvitz-Thompson esti-

mator for R is:

R̂ =
∑s
i=1 Pr [Gpi ]·I (Gpi ,T)

πi ,
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where πi = 1 − (1 − Pr [Gpi ])
s
. The variance is:

Var [R̂] =
∑s
i=1

(
1−πi
πi

)
I (Gpi ,T)Pr [Gpi ]

2

+
∑s
i
∑s
j,i,j

(
πi j−πiπj
πiπj

)
I (Gpi ,T)I (Gpj ,T)Pr [Gpi ]Pr [Gpj ],

where πi j = 1− (1− Pr [Gpi ])
s − (1− Pr [Gpj ])

2 + (1− Pr [Gpi ] −

Pr [Gpj ])
s
. The variance is simplified as follows [19]:

Var [R̂] = R(1−R)
s −

Σsi=1(s−1)I (Gpi ,T)Pr [Gpi ]
2

2s . (8)

The variance using the lower and upper bounds is computed

in accordance with the stratified sampling as follows:

Var [R̂]′ =
(R̂−pc )(1−pd−R̂)

s −

∑s
i=1(s−1)I (Gpi ,T)Pr [Gpi ]

2

2s . (9)

Theorem 2. Given the number of samples s , the lower bound
pc , and the upper bound 1 − pd , the variance of network reliability
by using Horvits-Thompson estimator with s ′ (≤ s) samples is less
than and equal to that with s samples where s ′ is equal to the
number of samples in Monte Carlo estimator in 1.

Proof: From Equations (8) and (9), we have the following

equation:

(R̂−pc )(1−pd−R̂)
s ′ −

∑s
i=1(s

′−1)I (Gpi ,T)Pr [Gpi ]
2

2s ′

=
R̂(1−R̂)

s −

∑s
i=1(s−1)I (Gpi ,T)Pr [Gpi ]

2

2s .

The values of the right are the same because the estimator is

unbiased. The proof for this follows Theorem 1. □

Our approach reduces the number of samples in accordance

with Theorems 1 and 2. As a result, our approach is more efficient

than the existing sampling-based approach.

4.3 Scalable and Sampling BDD: S2BDD
We can reduce the number of samples by using the lower and

upper bounds of network reliability. To efficiently obtain the

bounds, we develop the S
2
BDD. We efficiently search for the pos-

sible graphs in which terminal are connected and disconnected

with high probabilities by constructing the S
2
BDD. Furthermore,

during constructing the S
2
BDD, we sample possible graphs that

are not used to compute the bounds, which is the requirement

of stratified sampling. Our approach uses S
2
BDD for both com-

puting the bounds of network reliability and sampling possible

graphs.

We design the S
2
BDD to effectively reduce its size. The S

2
BDD

keeps a single layer and sink nodes while ordinary BDD contains

all layers. This idea is based on the observation that the layer

l − 1 is unnecessary after constructing the next layer l to both

construct the layer l + 1 and obtain the bounds. We first define

the S
2
BDD and then explain how to construct it.

Definition 2. LetNl be a set of nodes at layer l . S2BDD consists
Nl , the 1-sink, and the 0-sink. The S2BDD maintains the following
attributes on node n ∈ N:
• pn : the probability of the intermediate graph corresponding
to node n.
• {cn,f } for all f ∈ Fl : an identifier of connected component.
If frontiers f and f ′ ∈ Fl are connected by existent edges,
cn,f and cn,f ′ share the same identifier.
• {dn,f } for all f ∈ Fl : the sum of the numbers of uncertain
edges connected to the frontiers such that { f ′ ∈ Fl |cn,f =
cn,f ′}.
• {tn,f } for all f ∈ Fl : the number of the terminals that are
connected to f by existent edges.

The 1-sink and 0-sink maintain the probabilities pc and pd that
terminals are connected and disconnected, respectively.

For example, in Figure 2, S
2
BDD contains third and sink layers

but does not contains first and second layers.

To construct an S
2
BDD, we process edge el and generate the

set of nodes Nnext at layer l + 1. The construction method com-

prises four procedures; generating, merging, deleting, and sam-
pling. The following sections explain these procedures in details.

4.3.1 Generating and Merging Procedures. The BDD-based ap-
proach uses the generating and merging procedures to construct

the BDD. We extend these procedures to effectively compute the

bounds without sacrificing the exactness of the network reliabil-

ity. For extending the generating and merging procedures, we

capture the feature of computing the network reliability such

that we can skip the computation of nodes when we obtain the

probabilities pc and pd exactly.

We first explain the generating procedure. The generating

procedure sets the state of edge el (recall that arcs at layer l in the

BDD corresponding to el ) and then generates the set of new nodes

Nnext at layer l + 1. As the same as the traditional procedure, we

generate two new nodes at layer l + 1 from every node at layer

l according to the state of el . We set the attributes on the new

nodes (i.e., pn , {cn,f }, {dn,f }, and {tn,f }). More specifically, pn is

set as pn ·p(el ) when el is existent and set as pn · (1−p(el )) when
el is non-existent. {cn,f }, {dn,f }, and {tn,f } are computed from

attributes of frontiers on nodes at layer l by merging attributes

of frontiers and creating new frontiers. If all the terminals in the

intermediate graph are connected, we add its probability to pc ,
and if they are disconnected, we add its probability to pd .

If we determine whether or not terminals are connected/disco-

nnectedwith processing a smaller number of edges, we can obtain

the tight bounds of the network reliability earlier. Let n, n′, F, and
F′ be the new node at layer l + 1, the node before setting el of n
at layer l , the sets of frontier at layers l + 1 and l , respectively. We

determine whether or not terminals are connected/disconnected

based on following lemmas:

Lemma 4.1. All the terminals t ∈ T are connected if the at-
tributes of the frontiers satisfy one of the following conditions:
Condition 1: edge el = (v,v ′) is existent, for tn,f = k , ∃f ∈ F.
Condition 2: edge el = (v,v ′) is existent, for (1) v ∈ F′, (2)
v ′ < F′ ∪ F, (3) tn′,v = k − 1, and (4) v ∈ T (similarly, replacing v
with v ′ and vice versa).
Condition 3: edge el = (v,v ′) is existent, for (1) v,v ′ ∈ F, (2)
cn′,v , cn′,v ′ , and (3) tn′,v + tn′,v ′ = k .

Proof: This is an immediate consequence of the definitions

because all the terminals are connected. □

Lemma 4.2. The terminals are disconnected if the attributes of
the frontiers satisfy one of the following conditions:
Condition 1: edge el = (v,v ′) is non-existent, for (1) v < F′ ∪ F,
and (2) v ∈ T (similarly, for v ′).
Condition 2: edge el = (v,v ′) is non-existent, for (1) v ∈ F′, (2)
tn′,v > 0, and (3) dn′,v =1 (similarly, for v ′).
Condition 3: edge el = (v,v ′) is existent or non-existent, for (1)
v,v ′ ∈ F′\F and (2) (tn′,v > 0 or tn′,v ′ > 0).

Proof: This is an immediate consequence of the definitions

because the terminals are disconnected. □

Note that the state-of-the-art construction of the BDD uses only

the condition 1 on Lemmas 1 and 2. As a result, the S
2
BDD can

more effectively tighten the bounds of network reliability.
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We next explain the merging procedure. Since each interme-

diate graph on S
2
BDD has different existent and non-existent

edges, the attributes on each frontier are different (in general).

The merging procedure merges the nodes that make a transition

to the same sink nodes based on the following lemma:

Lemma 4.3. Given nodes n1 and n2 at layer l , if we have for
∀f ∈ Fl (1) cn1,f = cn2,f and (2) (tn1,f = 0 and tn2,f = 0) or
(tn1,f > 0 and tn2,f > 0), then nodes derived from n1 and n2 with
the same states of edges el+1, . . . , e |E | make a transition to the
same sink nodes.

Proof: If n1 and n2 have (1) {cn1,f } = {cn2,f } for all f in Fl ,
the connected frontiers are the same in the intermediate graphs

corresponding to n1 and n2. New nodes n′
1
and n′

2
derived from

n1 and n2 are the same {cn′
1
,f } = {cn′

2
,f } if they have the same

states of edges el+1, . . . , e |E | . Thus, {cn1,f } and {cn2,f } for all f
in Fl are the same until they make a transition to the sink nodes.

Since the same {cn1,f } and {cn2,f } share the same connected

components, each frontier has the same {dn1,f } and {dn2,f }. In

addition, frontiers f and f ′ must be connected if they connect

to at least one terminals (i.e., tn1,f > 0 and tn2,f > 0). If (1)

{cn1,f } = {cn2,f } and (2) (tn1,f = 0 and tn2,f = 0) or (tn1,f > 0

and tn2,f > 0) for all f in Fl , nodes derived from n1 and n2 with
the same states of edges el+1, . . . , e |E | have the same attributes

on the frontiers, and thus they make a transition to the same sink

nodes. □
The probabilities of the merged nodes are aggregated to one

node. The probabilities pc and pd are consistent, regardless of

whether or not the nodes are merged. These procedures do not

sacrifice the exactness of the network reliability.

4.3.2 Deleting Procedure. The size of the S2BDD increases

exponentially as the size of the graph increases. If the size of

S
2
BDD increases, the computation cost increases to obtain the

lower and upper bounds of the network reliability because it

takes a large time to construct the S
2
BDD. Hence, we control

the size of S
2
BDD by specifying the maximum sizew . The delet-

ing procedure deletes the nodes so that the size of an S
2
BDD

is not larger thanw . One of major difficulties in designing this

procedure pertains to which nodes should be kept in the S
2
BDD

for achieving higher efficiency and accuracy. According to Theo-

rems 1 and 2, the number of samples effectively decreases as the

probabilities pc and pd increase. We identify intermediate graphs

in which terminals are highly likely connected or disconnected

after processing a small number of edges. We make the following

key observations in terms of the connectivity of terminals:

Observation 1 The terminals in the intermediate graph cor-

responding to node n are highly likely connected if tn,f is

large for ∃f ∈ Fl .
Observation 2 The terminals in the intermediate graph cor-

responding to noden are highly likely disconnected ifdn,f
is small and tn,f > 0 for ∃f ∈ Fl .

Furthermore, if the probability of node pn is high and node n
makes a transition to sink nodes, pc and pd increase considerably.

Based on these observations, we define a heuristic function based

on our observations. We compute the priorities of nodes from

their attributes by the heuristic function and preferentially keep

high-priority nodes. The heuristic function h to compute the

priority of node n is as follows:

h(n) = pn ·maxf ∈F

( tn, f
k ,

1

dn, f

)
if tn,f > 0. (10)

This function outputs larger value when (1) a frontier is con-

nected to at least one terminals and (2) the frontier is connected

to a large number of terminals or (3) the frontier has a small

number of uncertain edges. In the former case, the terminals are

likely connected, and in the latter case, the terminals are likely

disconnected. Low-priority nodes (i.e., n with smallh(n)) are then
deleted from an S

2
BDD.

4.3.3 Sampling procedure. Our approach samples possible

graphs so that it avoids sampling the possible graphs that are

used to compute the lower and upper bounds of network relia-

bility, for satisfying the requirements of the stratified sampling.

We sample the possible graphs from the set of possible graphs

that in which terminals are not connected/disconnected yet. We

denote byWGu such set of possible graphs, and the set is obtained

from intermediate graphs corresponding to the deleted nodes and

nodes in the S
2
BDD. We employ dynamic programming for effi-

ciently sampling possible graphs fromWGu . In addition, we use

the idea of the stratified random sampling [32] for determining

the number of samples for subgroups that are partialWGu .

We first divideWGu into subgroups and then randomly sample

possible graphs from each subgroup. The number of samples for

each subgroup is taken in proportion to the sum of the prob-

abilities of the intermediate graphs in the subgroup. We here

explain only how to divide the deleted nodes and how to decide

the number of samples for them. As for the nodes in S
2
BDD,

each subgroup is the set of possible graphs obtained from the

intermediate graph corresponding to the node, and the number

of samples is computed from its probabilities.

We divide the set of intermediate graphs for deleted nodes

into subgroups according to original BDD layers instead of the

node itself. This is because probabilities of deleted nodes are

typically quite small to decide the number of samples.W
Gl
u and

sl are the set of intermediate graphs corresponding to the deleted

nodes at layer l and the number of samples at layer l , respectively.
sl is computed by multiplying s and the total probabilities ˆpsl
of deleted nodes at layer l . We compute ˆpsl from the attributes

maintained by the S
2
BDD by the following equation:

ˆpsl = 1 −
∑l−1
i=1 psi − pNnext − pc − pd , (11)

where pNnext denotes the sum of probabilities of n ∈ Nnext .
ˆpsl is the expected sum of probabilities of deleted nodes. This

is because ˆpsl indicates the sum of probabilities in Nl when the

number of nodes at layer l + 1 reaches the maximum size. The

number of samples sl at layer l becomes s · ˆpsl . The dynamic pro-

gramming and stratified random sampling improve the efficiency

of sampling while keeping the unbiased sampling.

4.4 Complexity
We explain the time and space complexities of our approach.

Theorem 3. Given the uncertain graph G, the updated number
of samples s ′, and the maximum width of S2BDDw , the time and
space complexities of our approach areO(w2

logw + s ′(|V| + |E|))
and O(w logw + |V| + |E|), respectively.

Proof: The time complexity of our approach is divided into two

parts; constructing S
2
BDD and sampling. To construct S

2
BDD,

our construction method compares attributes on each node each

other for generating and merging procedures. The number of

attributes on each node increases in proportion to the number

of frontiers. The number of frontiers is O(logw) because the

number of existent/non-existent edges is at most logw . Thus,
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the time complexity for constructing S
2
BDD is O(w2

logw). The
time complexity of sampling is O(s ′(|V| + |E|)). Therefore, the
time complexity of our approach is O(w2

logw + s ′(|V| + |E|)).
The space complexity depends on the size of S

2
BDD and the

uncertain graphs. The size of S
2
BDD is the number of nodes

multiplied by the number of attributes on each node. Therefore,

the space complexity is O(w logw + |V| + |E|). □

5 EXTENSION
The computation cost of our approach depends on the size of

the uncertain graphs as well as the number of samples. The

computation cost decreases as the size of the uncertain graphs

decreases. Therefore, we propose an extension technique to effi-

ciently reduce the size of graphs while preserving the accuracy.

The extension technique preprocesses the uncertain graphs be-

fore sampling possible graphs and constructing an S
2
BDD. It not

only improves the efficiency but also improves the accuracy of the

approximation. The extension technique uses 2-edge-connected
components for reducting the size of uncertain graphs [7].

Definition 3 (2-edge-connected component). Given a graph
G = (V,E), an edge is called a bridge if G is disconnected after
the removal of the edge from E. Vertices that are connected by
bridges are called articulation points. A subgraph C = (VC ,EC )
of G is a 2-edge connected component if C is still connected after
the removal of any edges from EC . We denote the sets of bridges,
articulation points, and 2-edge connected components by B, A, and
C, respectively

The 2-edge-connected components, bridges, and articulation

points provide sets of edges (and vertices) such that the uncer-

tain graph is disconnected or still connected when the edges

(and vertices) are deleted. Because we can compute 2-edge con-

nected components only by using the network topology of a

given uncertain graph, we precompute them as an index.

The extension technique consists of three phases; (1) pruning,

(2) decomposing, and (3) transforming. In the pruning phase, we

first compute G′ such that R[G] = R[G′]. The number of edges

in G′ is smaller than that in G by pruning edges and vertices

that do not affect computing the network reliability. Next, in

the decomposing phase, we compute the subgraphs G1, . . . ,Gm
where R[G′] = Πmi=1R[Gi ]. Finally, in the transforming phase, we

compute G′i such that R[Gi ] = R[G′i ] for all 1 ≤ i ≤ m. Since we

transform the graph into a smaller graph, the number of edges

in G′i is smaller than that in Gi .

Prune: We prune vertices and edges that do not affect the

network reliability. A vertex (or an edge) is unnecessary if the

graph is partitioned after the removal of the vertex (or edge) from

G and one of the partitioned graphs does not include terminals.

A naive approach deletes each articulation point and bridge, and

then checks whether partitioned graphs include terminals or not.

This approach incursO((|B|+ |A|)(|V|+ |E|)) time complexity. To

improve the efficiency, we reconstruct the uncertain graph based

on the 2-edge connected components. To do so, we first unite the

set of vertices and edges included inC ∈ C to form a single vertex

vc . We then set every articulation point included in C as vertex

va and set edges betweenva andvc . The other vertices and edges
that are not included in C are still in the reconstructed graphs.

Therefore, the vertices of the reconstructed graph indicate C, A,
and the vertices that are not included in C. If any vertex in C
except for articulation points is a terminal, vc is also a terminal.

The reconstructed graph is structured as a tree structure because

the 2-edge connected components are connected to the other

components by a single edge. To compute the necessary vertices

and edges, we compute the minimum Steiner tree for terminals

in the reconstructed graph. The minimum Steiner tree includes

only the necessary vertices and edges to compute the network

reliability because it includes only the edges and vertices that

all the terminals are connected. Its computation cost is O(|V|),
because the minimum Steiner tree in a tree structure is computed

by a depth first search from a terminal.

Decompose: We decompose the graph because the time com-

plexity for computing the network reliability on decomposed

graphs becomes smaller than that on that original uncertain

graph. The decomposed graph has fewer edges than the origi-

nal uncertain graph. We decompose the graph according to the

following lemma:

Lemma 5.1. Given an uncertain graph and a set of bridges, we
obtain R[G,T] = pb ·

∏m
i=1 R[Gi ,Ti ], where pb =

∏
eb ∈B p(eb )

and Ti is the set of terminals for Gi .

Proof: Given intermediate graph GE(E∃,E¬) and edge e ∈
E\(E∃ ∪ E¬), the network reliability is computed using the Fac-

toring Theorem [10]:

R[GE(E∃,E¬)] = p(e) · R[GE(E∃ ∪ e,E¬)]
+(1 − p(e)) · R[GE(E∃,E¬ ∪ e)]. (12)

If we select bridge eb = (v,v
′) ∈ B as e in Equation (12),

R[GE(E∃,E¬ ∪ e)] is zero because terminals in GE(E∃,E¬ ∪ e)
are disconnected. Therefore, we obtain the following equation:

R[GE(E∃,E¬)] = p(eb ) · R[GE(E∃ ∪ eb ,E¬)]. (13)

For connecting all the terminals, eb must be existent, and thus we

can decompose the intermediate graph GE into two graphs GE1
and GE2 . We also divide the terminals T into T1 and T2 for GE1
and GE2 , respectively; T1 includes {t ∈ T,v,v ′ |t ,v,v ′ ∈ V1}
(similarly, T2). Thus, R[GE] = p(eb ) ·R[GE1 ]R[GE2 ]. GE1 and GE2
are decomposed in the same manner. Then, we obtain R[G] =
pb ·

∏m
i=1 R[Gi ,Ti ]. □

We decompose the uncertain graph into several subgraphs

based on the above lemma. Its computation cost is O(|B| |V|)
because we check whether decomposed graphs include terminals

or not for each bridge.

Transform: We transform the graph to reduce its size. We

delete and add the following edges and vertices without sacrific-

ing the exactness of the network reliability:

• Sequential edges (e = (v,v ′), e ′ = (v,v ′′)): Delete v , e
and e ′, and add a new edge with probability p(e) · p(e ′)
between v ′ and v ′′, provided that v is not a terminal and

its degree is two.

• Parallel edges (e = (v,v ′), e ′ = (v,v ′)): Delete e and e ′,
and add a new edge with probability (1−(1−p(e)·(1−p(e ′))
between v and v ′.
• Loop : Delete the loop because loops do not contribute to

the network reliability. Note that transforming sequential

and parallel edges can generate loops.

We iteratively repeat this process until the graph does not change.

The computation cost is O(γ · |V| · davд
2) where γ and davд are

the number of repetitions and the average degree of the vertices,

respectively.

Consequently, the extension technique effectively reduces the

computation cost for computing the network reliability with a

small preprocessing time. Furthermore, it improves the accuracy

of the sampling technique.
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Algorithm 1: Computing the approximate network reliabil-

ity

input :Uncertain graph G, terminals T, maximum BDD sizew , size of

samples s , 2-edge connected components C, bridges B, articulation
points A

output :Approximate network reliability R̂
1 procedure our approach
2 set T to G;

3 R̂, SG ← Preprocess(G, T, C, B, A);
4 for Gi ∈ SG do
5 r ← Construction(Gi ,w , s);
6 R̂ ← R̂ · r ;

7 return R̂ ;

8 end procedure

Algorithm 2: Constructing S2BDD
input :Uncertain graph G, maximum sizew , number of samples s
output :Approximate network reliability R̂

1 procedure Construction(G,w , s)
2 Ordering(E);

3 pc , pd , ˆpsl , c ← 0; /* initialize probabilities and sampling

count */

4 s ′ ← s ;
5 N← CreateRoot; F← null ;
6 for l for 1, . . . , |E | do
7 pN, psi ← 0;

8 F′ ← F; compute F based on el ;
9 while N is empty do

10 n ← N.pop ;
11 for state ∈ { non-existent, existent } do
12 set(n, F′, F, state, G, el );
13 if n is 0-sink then pd ← pd + pn ;
14 else if n is 1-sink then pc ← pc + pn ;
15 else
16 if hashmap[n] is not null then
17 phashmap[n] ← phashmap[n] + pn ;

18 else
19 if |Nnext | ≤ w then
20 hn ← h(n);
21 Nnext .add(n); hashmap[n] ← n;

pNnext ← pNnext + pn ;

22 else
23 psi ← psi + pn ;
24 for i for

1, . . . , ⌊s ′ · (1 − ˆpsl − pNnext − pc − pd )⌋
do

25 if Sampling(G, n) then c ← c + 1;

26 if c + ⌊s ′ · pNnext ⌋ ≥ s
′ then

27 for n ∈ N do
28 for i for 1, . . . , ⌊s ′ · pNnext ⌋ do
29 if Sampling(G, n) then c ← c + 1;

30 break;

31 if Nn is empty then
32 break;

33 N← Nnext ;

34 sort N in descending order of h(n);
35 ˆpsl ← ˆpsl + psi ; compute s ′; clear Nnext ; clear hashmap;

36 compute R̂ based on the sampling;

37 return R̂ ;

38 end procedure

Theorem 4. GivenG1, . . . ,Gm such thatR[G] = pb ·Πmi=1R[Gi ],
the variance of the network reliability decreases for 0 < R̂ < 1 and
0 < pb < 1.

Proof: The network reliability is denoted by R̂ = pb ·Πmi=1R̂[Gi ].
The valiance is computed as follows:

Algorithm 3: Extension technique

input :Uncertain graph G, terminals T, 2-edge connected components C,
bridges B, articulation points A

output :Probability pb , the set of decomposed graphs SG
1 procedure Preprocess(G, C, B, A)
/* Prune */

2 Gr ← Reconstruct(G);

3 Compute the minimum Steiner tree T for Gr and terminals;

4 Delete edges and vertices of G not included in T;

/* Decompose */

5 pb ←
∏

eb ∈B
p(eb );

6 Delete the set of bridges in G;

7 SG ← the set of disconnected graphs;

/* Transform */

8 for G′ ∈ SG do
9 while 1 do

10 for v ∈ V of G′ do
11 if v connects to edge e = (v, v) then
12 delete e = (v, v);

13 if v < T and v connects to just two edges e = (v, v ′) and
e ′ = (v, v ′′) then

14 delete e and e ′ from G′;
15 add a new edge (v ′, v ′′) with probability p(e) · p(e ′);

16 for v ∈ V of G′ do
17 for ∀ pair of u and u′ ∈ the set of neighbor vertices of v do
18 if u = u′ then
19 delete edge e = (v, u) and e ′ = (v, u′);
20 add a new edge (v, u) with probability

(1 − (1 − p(e) · (1 − p(e ′));

21 if The number of edges does not change then
22 break;

23 return pb , SG ;

24 end procedure

Var [R̂] = Var [pb · Π
m
i=1R̂[Gi ]]

= (Var [pb ] + pb
2)(Var [R̂[G1]] + R̂[G1]

2

) · · ·

(Var [R̂[Gm ]] + R̂[Gm ]
2) − pb

2 · Πmi=1R̂[Gi ]
2

= pb
2Πmi=1(Var [R̂[Gi ]] + R̂[Gi ]

2

) − pb
2Πmi=1R̂[Gi ]

2

= pb
2Πmi=1

(
R̂[Gi ](1−R̂[Gi ])

s + R̂[Gi ]
2

)
− pb

2Πmi=1R̂[Gi ]
2

= pb
2Πmi=1R̂[Gi ]

(
(1+(s−1)R̂[Gi ])

s

)
− pb

2Πmi=1R̂[Gi ]
2

<
pb 2Πmi=1R̂[Gi ]

s −
pb 2Πmi=1R̂[Gi ]

2

s

= pb
R̂(1−R̂)

s <
R̂(1−R̂)

s (14)

Note thatVar [pb ] = 0.Var [R̂] is smaller than the variance of the

network reliability of the original graph. □

6 ALGORITHM OF OUR APPROACH
In this section, we explain the entire algorithm of our approach.

Algorithm 1 shows the pseudo-codes. Our approach first pre-

processes uncertain graphs and obtains decomposed uncertain

graphs (line 3). For each decomposed graph, it then constructs

an S
2
BDD to compute the approximate network reliability of

the decomposed graphs (lines 4–5). The product of the network

reliability of each decomposed graph is the original network

reliability (line 6).

Algorithm 2 shows the pseudo-codes for the construction of an

S
2
BDD. We process edges in a predefined order, and compute the

set of frontiers (lines 6–8). For each node at layer l , we compute

the nodes at layer l + 1 according to the states of the edges
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Table 2: Dataset

Name Abbr. Type #vertices #edges Avg. Deg Avg. Prob

Zachary-karate-club Karate Social 34 78 4.59 0.527

American-Revolution Am-Rv Affiliation 141 160 2.27 0.528

DBLP before 2000 DBLP1 Coauthorship 25,871 108,459 8.38 0.222

DBLP after 2000 DBLP2 Coauthorship 48,938 136,034 5.56 0.203

Tokyo Tokyo Road network 26,370 32,298 2.45 0.391

New York City NYC Road network 180,188 208,441 2.31 0.294

Hit-direct Hit-d Protein 18,256 248,770 27.25 0.470

(lines 11–12). The set function (line 12) sets attributes on the

new node to n and checks whether the terminals are connected

or disconnected based on Lemmas 1 and 2. If the new node are

0-sink and 1-sink, we add pn to pd and pc , respectively (line 13–

14). Otherwise, we compute hash values for n, and if the hash

of n is not null, we add the probability pn to the node in the

hash (lines 16–17). If the hash is null with respect to n, it inserts
n into the set Nnext of nodes at layer l + 1 and into the hash

after computing their priorities (lines 19–21). If the number of

nodes in Nn exceeds the maximum sizew , we delete n and pick

possible graphs as samples from n (lines 22–25). After sampling

an enough number of possible graphs, we sample form the nodes

in the S
2
BDD (lines 26–29).

Algorithm 3 shows the pseudo-codes for the extension tech-

nique. The extension technique first reconstructs the uncertain

graph (line 2). Then, it computes the minimum Steiner tree for the

reconstructed graph and prunes the edges and vertices that are

not included in the Steiner tree from the original uncertain graph

(lines 3–4). To decompose the graph, we compute the product of

the probabilities of bridges pb (line 5). Then, we delete bridges

from the uncertain graph, and the disconnected subgraphs are

inserted into the set of decomposed uncertain graphs (lines 6–7).

For each decomposed graph, it transforms vertices and edges

that satisfy the transformation rules (lines 8–20).

7 EXPERIMENT
We evaluate our approach in terms of efficiency, accuracy, and

memory usage.

7.1 Dataset
We summarize the datasets in Table 2. The first two datasets;

Zachary-karate-club and American-revolution are small datasets

for evaluating accuracy, which are extracted from KONECT
3
. We

randomly assign probabilities based on the uniform distribution

[9]. The other five datasets; DBLP before 2000, DBLP after 2000,

Tokyo, New York City, and Hit-direct, are large datasets. Edge

existence probabilities for each large dataset are assigned based

on the attributes of the edges in each dataset. DBLP before 2000

and DBLP after 2000 are graphs extracted from DBLP
4
, where

vertices and edges are authors and co-author, respectively. We

compute the edge existence probabilities by
log(α+1)
log(αM+2)

, where

α and αM denote the number of co-authors and the maximum

in each dataset, respectively [6]. The Tokyo and New York City

datasets are road networks extracted from OpenStreetMap
5
. We

compute the edge existence probabilities in the same manner as

with the DBLP datasets, although we use road lengths instead

of the number of co-authors. Note that both the Tokyo and New

3
http://konect.uni-koblenz.de/

4
http://dblp.uni-trier.de/

5
https://www.openstreetmap.org

York City datasets are not planar graphs. Hit-direct is a protein-

protein interaction network extracted from the Human Genome

Center
6
. We use the interaction scores ∈ (0, 1] of interactions as

the edge existence probabilities.

7.2 Setting and Implementation
For each dataset, we generate 20 searches (except when we eval-

uate the accuracy, for which see Section 7.6). The terminals are

selected randomly from vertices. We vary the number of termi-

nals k , the number of samples s , and the maximum size of the

S
2
BDDw .

Because the existence probabilities of possible graphs can be

very small, we use the Boost.Multiprecision library, with preci-

sion of 10,000 decimal points, for the large datasets. We compute

the 2-edge-connected components using code provided by the

authors [7]. We compare our approach with two existing ap-

proaches; the sampling-based and BDD-based approaches. The

BDD-based approach uses the state-of-the art library, TdZDD.

All algorithms are implemented in C++, and run on a server with

an Intel Xenon E7-8860v4 at 2.20GHz with 256GB RAM.

7.3 Efficiency
We compare the efficiency of our approach with that of sampling-

based and BDD-based approaches. Figure 3 shows the response

time for each large dataset when the numbers of terminals k
is set to 5, 10, and 20. DNF indicates that we cannot compute

the network reliability due to the lack of memory space. We use

Monte Carlo estimator for our approach and the sampling-based

approach (denoted by Pro(MC) and Sampling(MC), respectively)
and set s to 10,000. For our approach, we set w to 10,000. We

also evaluate our approach without the extension technique de-

noted by Pro(MC)w/o ext. We here omit the results of Horvitz-

Thompson estimator because they are almost equivalent to those

of Monte Carlo estimator.

The results show that our approach is more efficient than

both of the sampling-based and the BDD-based approaches for

all k . The BDD-based approach cannot compute the network

reliability because it runs out of memory. Our approach achieves

higher efficiency than the sampling-based approach because it

reduces the number of samples. Furthermore, we can see that

the extension technique improves the efficiency. In particular,

our approach works well on the Tokyo and NYC datasets. This is

because the S
2
BDDworks well for planar-like graphs (even when

they are not strictly planar graphs). In the Hit-direct dataset, the

lower and upper bounds do not effectively become tight because

the number of degrees is large. Nevertheless, our approach is

more efficient than the sampling-based approach.

6
http://hintdb.hgc.jp/htp/download.html.
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Figure 3: Overview of efficiency
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Figure 4: Efficiency with varying the number of samples
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Figure 5: Efficiency with varying the maximum width

7.4 Effect of Number of Samples
We evaluate the effect of the given number of samples. Figure 4

shows (a) the rate of response time of our approach over that of

the sampling-based approach and (b) the rate of updated samples

s ′ over s , varying the number of samples. This figure shows that

our approach becomes more efficient as the given number of

samples increases. This is because the reduction of the number

of samples is more effective when the given number of samples

is large. Therefore, our approach more effectively works when

we need a high accurate network reliability.

7.5 Effect of MaximumWidth
We evaluate the effect of the given maximum width of S

2
BDD.

The maximum widthw affects the memory usage and efficiency.

Figure 5 shows (a) the memory usage and (b) the response time.

From Figure 5(a), we can see that the memory usage increases as

the maximum width increases. The memory usage depends on

the maximum width but not depends on the size of graphs. Our

approach can be used for large-scale graphs in terms of memory

usage. From Figure 5(b), we can see that the response time does

not largely depend on the maximum width. When the maximum

width is large, our approach can reduce the number of samples

but takes a large computation cost for constructing S
2
BDD. Our

approach is robust enough to the maximum width in terms of

efficiency. Consequently, our approach effectively decreases the

response time even for large-scale graphs.

7.6 Accuracy
We evaluate the accuracy of our approach compared with the

sampling-based approaches. For both approaches, we use Horvits-

Thompson estimator (denoted by Pro(HT) and Sampling(HT)) as
well as Monte Carlo estimator. Since the network reliability prob-

lem is #P-complete, we cannot compute the exact answer for large

datasets in terms of both response time and memory usage. We

use the Karate and Am-Rv datasets which can be computed the

exact network reliability. We evaluate the variance and the error

rate to determine the accuracy of the approximation as follows:

variance =
Σ
q
1

i=1Σ
q
2

j=1(Ri−R̂i, j )
2

q1 ·q2 and error rate =
Σ
q
1

i=1Σ
q
2

j=1 |Ri−R̂i, j |
q1 ·q2 ·Ri ,

where Ri and R̂i, j denote the i-th exact network reliability and

the j-th approximate network reliability for the i-th search, re-

spectively. We generate 100 searches and compute the network

reliability 100 times for each search (i.e., both q1 and q2 are 100).
Tables 3 and 4 show the accuracy on the Karate and Am-Rv

datasets, respectively. Table 3 shows that our approach outper-

forms the sampling-based approaches in terms of both of the

variance and error rate. Comparing the variance between the

estimators, the Monte Carlo estimator is slightly better than the

Horvits-Thompson sampling. This is because we sample possible

graphs with replacement, and thus the Horvits-Thompson esti-

mator is less effective. Table 4 shows that our approach always

computes the exact network reliability on the Am-Rv dataset— its

error rate is zero. Both of the existing sampling-based approaches

have high error rates when k = 20 although their variances are

small. Because the network reliability is very small, the sampling-

based approaches rarely sample the possible graphs in which

terminals are connected. Thus, the approximate network reliabil-

ity is often zero, and the error rates are close to one. From these

results, we conclude that our approach can achieve less variance

and error rate with fewer samples than the other approaches and

compute the exact answer for small-scale graphs.

7.7 Effect of Extension Technique
Finally, we evaluate the performance of the extension technique.

The effect of the extension technique is detailed in Table 5 which

shows the process time and the ratio of the maximum number of

edges in decomposed graphs over the number of edges in the orig-

inal uncertain graph. The results show that the extension tech-

nique requires a very small time compared with computing the

network reliability. Thus, it effectively reduces the total response

time. Since it reduces the size of uncertain graphs, it mitigates

the computation cost for the S
2
BDD. The extension technique is

effective for improving the efficiency of our approach.
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Table 3: Accuracy on Karate dataset

k Method Variance Error rate

5

Pro(MC) 0.025 0.036

Pro(HT) 0.025 0.036

Sampling(MC) 0.025 0.037

Sampling(HT) 0.029 0.042

10

Pro(MC) 0.013 0.058

Pro(HT) 0.014 0.059

Sampling(MC) 0.013 0.058

Sampling(HT) 0.015 0.062

20

Pro(MC) 0.76 ·10−3 0.054

Pro(HT) 0.85·10−3 0.057

Sampling(MC) 0.78·10−3 0.056

Sampling(HT) 0.86·10−3 0.057

Table 4: Accuracy on Am-Rv dataset

k Method Variance Error rate

5

Pro(MC) 0 0

Pro(HT) 0 0

Sampling(MC) 0.43·10−4 0.061

Sampling(HT) 0.31·10−4 0.059

10

Pro(MC) 0 0

Pro(HT) 0 0

Sampling(MC) 0.099·10−5 0.38

Sampling(HT) 0.12·10−5 0.37

20

Pro(MC) 0 0

Pro(HT) 0 0

Sampling(MC) 0.10·10−3 1.00

Sampling(HT) 0.10·10−3 1.00

Table 5: Effect of extension technique

Dataset

Process time Reduced

[sec] graph size

Karate 0.0277·10−3 0.757

Am-Rv 0.310·10−3 0.120

DBLP1 0.060 0.946

DBLP2 1.61 0.797

Tokyo 0.015 0.425

NYC 0.370 0.279

Hit-d 0.184 0.982

8 CONCLUSION
In this paper, we proposed an efficient sampling-based approach

for computing the approximate network reliability. Our approach

reduces the number of samples by using lower and upper bounds

of the network reliability based on the stratified sampling. We

developed scalable and sampling BDD, called S
2
BDD, which effi-

ciently computes the bounds. The S
2
BDD preferentially searches

for the possible graphs that highly improve the bounds. We fur-

ther developed the extension technique of our approach to reduce

the size of graphs. Experiments demonstrated that our approach

is up to 51.2 times faster than the sampling-based approach with

a higher accuracy.
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