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Abstract
This article addresses the top-k query processing problem on mobile ad hoc networks
(MANETs). Top-k query processing is common to retrieve only highly important data items.
However, methods for top-k query processing are not enough efficient and accurate in
MANET environments. For improving the efficiency and accuracy, replication is a promis-
ing technique that each node in MANETs replicates data items retained by other nodes into
its storage. Therefore, we fully combine the top-k query processing with data replication.
We propose a framework that efficiently processes top-k queries based on a new replication
strategy. We develop new replication strategy FReT (topology-Free Replication for Top-k
query). FReT determines near-optimal allocations of replicas. It advantages efficient top-k
query processing from limited search area without maintenance costs even if mobile nodes
move. Our top-k query processing methods retrieve the exact answer with small overhead
and delay by gradually increasing the search area based on FReT. We demonstrate, through
extensive experiments, that FReT and query processing methods function well in terms of
small delay and overhead without sacrificing exactness of the query result.

Keywords Top-k query · Replication · Mobile ad hoc networks

1 Introduction

Wireless communication technologies and computer devices have grown remarkably in
the past several decades. Mobile devices directly connect with other devices without any
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infrastructure by using wireless communication such as bluetooth and Wi-Fi direct. They
can easily communicate each other and share data items on demand. These developments
bring us a new network concept mobile ad hoc network (MANET) [4, 13]. MANETs are
opportunistic networks, and composed of autonomous mobile nodes (e.g., people having
mobile devices) which can communicate each other without any infrastructures. When a
mobile node sends a message to another node which is not within its radio range, other nodes
relay the message to successfully reach the destination node. From this feature, MANETs
are expected to be developed in many situations such as a disaster. MANETs have some
important factors to be widely used such as routing protocols [18] and security [11]. One
of the important factors is query processing, but it has not been studied well. In this article,
we focus on top-k query processing in MANETs, which computes the k most relevant data
items based on attribute values with regard to a query condition. This fundamental query has
been developed in many important applications such as (i) Web and Internet search engines,
for word-occurrence and text-based relevance [9]; (ii) wireless sensor networks (WSNs),
for detection of statistical outliers [26]; and (iii) peer-to-peer (P2P) networks, for sharing
interesting contents [25]. Top-k queries are also available in the field of MANETs such as
the following example:

Example 1 We assume a disaster site where the informational infrastructure (e.g., the
Internet) is disabled. In this situation, MANETs are helpful because we can share data with-
out specific infrastructures. In a disaster site, numerous rescuers input on-site information
on victims and buildings into their devices, and search for seriously-injured victims and
badly-damaged buildings. Due to a shortage of supplies or manpower (e.g., the number of
ambulances is 10 or the number of groups of rescuers is 50), it is desirable to acquire only
important information on the most seriously-injured victims or badly-damaged buildings.
For example, rescuers issue a top-k query to retrieve ten victim information with the highest
injury levels.

1.1 Motivation and technical overview

Although the top-k query processing on MANETs has promising applications, few stud-
ies have investigated the potential of top-k query processing in MANETs [16, 20, 22]. To
process top-k queries in MANETs, when a mobile node issues a top-k query (we call a
mobile node which issues a top-k query a query-issuer), the query-issuer needs to send a
query message to all nodes in the entire network for retrieving the exact answer, because
the query-issuer does not know which nodes have data items included in the exact answer.
However, this procedure is quite inefficient. To avoid this inefficient procedure, replication
is a promising technique; each node replicates data items retained by other nodes into its
storage. Replication is effective in a MANET environment [17] because it has the capability
to improve data availability. By using replication, the query-issuer can receive the answer
only from few nodes instead of all nodes (i.e., can retrieve the answer in a limited search
area). Currently, no study effectively combines top-k query processing with replication in
MANETs.

Therefore, we propose a framework that effectively combines a novel top-k query pro-
cessing method with replication strategy in MANETs to be capable of guaranteeing the
exact query results in a limited search area. Mobile nodes replicate data items based on
our replication strategy called FReT (topology-Free Replication for Top-k query). FReT
determines the set of replicas retained by each node (we call it replica block) and the ratio
that replicas are allocated (we call it replica ratio) to efficiently acquire the exact answer.
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Moreover, FReT has no maintenance costs due to the movement of the nodes. In our query
processing methods, the query-issuer repeatedly sends the query message until it acquires
a top-k result, through increasing the TTL (time-to-live) that defines the search area by a
hop count. The increase in TTL is based on two complementary approaches; the expand-
ing ring and bundling methods. The expanding ring method aims at reducing the overhead;
on the other hand, the bundling method aims at reducing the delay. These two methods can
guarantee the acquisition of perfectly accurate answer with less overhead and delay.

1.2 Contribution and organization

We summarize our contributions as follows:

– Prior work does not effectively acquire an exact answer in environments where mobile
nodes hold replicas. Our framework is the first method which combines top-k query
processing with replication in MANETs.

– We analyze problems of top-k query processing and replication over a MANET environment.
– We formulate a replication strategy in which the query-issuer can acquire an exact

answer in a limited area. The replication strategy has robustness for movement of nodes
and dynamical topology change.

– We demonstrate, through extensive simulations taking into account the effect of the
physical layer, that our framework functions well in terms of small delay and overhead.

The remainder of this paper is organized as follows. Section 2 introduces the related
work. Section 3 provides preliminaries. Section 4 presents the proposed method. Section 5
explain an extension of the proposed method. Section 6 summarizes the results obtained
in the simulation experiments. Section 7 concludes the paper. This article is an extended
version of our previous work [21]. Since the previous work lacks theoretical analysis of our
algorithm, we theoretically analyze the performance of our framework and add new insights
in this articles. Furthermore, we propose extension techniques and add experimental studies
for checking the performance with varying additional parameters.

2 Related work

We describe existing works related to top-k query processing and replication. First, we
review some typical replication strategies and cooperative caching protocols in MANETs.
Then, we review some typical top-k query processing protocols in a variety of networks
such as P2P networks, WSNs, and MANETs.

2.1 Caching and replication in MANETs

First, we review some cooperative caching protocols in MANETs. In cooperative caching,
mobile nodes store data items when they receive the data items. On the other hand, in
replication, mobile nodes store data items as replicas in advance. Strengths of coopera-
tive caching is that it does not need to distribute data items initially and can store data
items according to user’s requirements on demand, while the weaknesses is that it cannot
achieve an optimal allocation. In [5], the authors proposed a form of cooperative caching
called Hamlet, aimed at creating diversity within neighboring nodes, so that users would
likely find required data items nearby, and thus the network would be less vulnerable to
being flooded with query messages. In [8, 23], the authors proposed a caching method for
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top-k query processing in MANETs1. As each node stores data items based on a summa-
tion of a random number and the score of data item that is computed from attribute values
with regard to a query condition, data items with high scores are frequently allocated, but
diversity of cached data items is maintained by setting an appropriate random number. This
method caches undue data items with low scores, and it is difficult to determine an appropri-
ate random number without knowledges of both query conditions and all data items. Thus,
this caching method is far from optimal. The authors [23] proposed top-k query processing
method for cached data items, but it does not efficiently processes top-k queries because it
basically floods query messages into the entire networks.

Second, we review some data replication protocols in MANETs. In [7], the author pro-
posed three algorithms for replica placement, to improve data availability. These algorithms
determine the allocation of replicas based on the access frequency, the replicas retained
by neighboring nodes, and the network topology. In [12], the authors proposed a form of
location-based replication called location-aided content management architecture (LACMA
for short), which supports searching for required data items in areas in which there is a high
probability of being found. In LACMA, data items are allocated to a specific grid based on
access frequency, and data items with higher access frequency are specifically allocated to
smaller grids. When leaving the current grid, nodes push the data items to bind the replicas to a
specific grid. However, if the respective grid contains no nodes, it cannot push the data items.

These protocols except for [8, 23] basically assume that each node requests one data item
with one query; however, a rank-based query, such as a top-k query, retrieves several data
items with one query. As our proposed protocol aims at acquiring k data items through a
small number of nodes that are accessed, without flooding the entire network with queries, it
is more difficult to effectively replicate data items, in order to reduce the overhead. As a con-
sequence of our survey, only LACMA [12] easily adapts to top-k query processing within a
limited search area because the top-k result may be acquired from specific grids, while the
other protocols are hard to process top-k queries within a limited search area because they
cannot simply determine the search area. Moreover, since the replication strategies involve
maintenance cost due to the movement of nodes, we are aiming for no maintenance cost
even if mobile nodes dynamically move.

2.2 Top-k query processing

Numerous methods of top-k processing in a variety of networks have been proposed. A host
of top-k query strategies have been proposed with respect to fixed P2P networks and envi-
ronments that data items are horizontally distributed. In [19], the authors proposed a method
in which the query-issuer caches the top-k result, and uses the historical query information.
In [24], the authors proposed a method for filtering out unnecessary data items by using
skylines [2]. However, these strategies consider neither packet collision nor movement of
nodes, and thus cannot be directly adopted to MANETs. In addition, typical distributed envi-
ronments assume that base stations and peers directly communicate each other, but which is
impossible in MANETs and WSNs because they are based on wireless communication. In
WSNs where data are sent by multi-hop relays to the sink, numerous strategies have been
proposed to minimize both the communication cost of data transmission and battery con-
sumption. In [26], an algorithm called FILA constructs filters for nodes in order to reduce
data sent to the base station (i.e., the sink). In [10], the authors proposed a method which

1Although the proposed method in [8] is named a replication method, this method is essentially a caching
protocol because each node stores data items when it receives data items.
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constructs a top-k filter by utilizing a dominant graph which was discussed in [27] as a
data structure for efficient top-k query processing in centralized databases. A WSN environ-
ment is more similar to a MANET environment than P2P networks because both WSN and
MANET use wireless communication. However, most of these studies in WSNs involved
fixed sensor nodes and a single sink.

A few works [16, 20, 22] are existing studies that address the issue of top-k query pro-
cessing in MANETs. The method proposed in [16] assumed an economic scheme (e.g.,
virtual currency) with a fundamentally different assumption from that of our study. In the
methods proposed in [20, 22], the query-issuer floods a query message into the network, and
receives in reply only data items with high scores, the goal being to minimize unnecessary
data item replies. Since these methods do not consider data replication, they employ a sim-
ple flooding and have difficulty in guaranteeing the acquisition of perfectly accurate query
results due to packet losses. In [1], the query-issuer sends a query message to only promising
nodes based on a routing table. This work can limit the number of access nodes, however, it
does not assume replication, and thus, the query-issuer sends query messages to far nodes
(i.e., search area becomes large). Moreover, it needs to maintain routing table with move-
ments of mobile nodes. These top-k query processing protocols in MANETs do not become
competitors to our work because they need to flood query messages into the network or
send query message to far nodes, which definitely involve a large amount of overhead.

3 Preliminaries

In this section, we explain system model and formulate our problem as preliminaries.
Table 1 summarizes the symbols used in the paper.

3.1 Systemmodel

The system model is assumed to be a MANET in which mobile nodes retrieve k highest
relevant data items (retained by themselves and other mobile nodes) using a top-k query.
The query-issuer designates the number of requested data items k and a query condition.
The data items are highly relevant when they have high scores that can be computed from a
query condition. k is selected from K different values ki (i = 1, . . ., K) with a probability
of p(ki). We assume that ki < ki+1 and kK is the maximum number of requested data. For
simplicity, all nodes designate ki with the same probability (i.e., use a given same access
model). We assume that each node knows the statistical access rate of k on a given situation.

Table 1 Symbols
Symbol Meaning

k Number of requested data items

ki K different values of k (i = 1, ...,K)

p(ki) Probability that ki is designated

M Number of nodes

mi Identifier of node (i = 1, ...,M)

D Number of data items

di Identifier of data (i = 1, ...,D)

i means ranks of data items

ρ Number of replicas which a node can allocate

R Communication range
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In a real situation, the access rate may not be perfectly known in advance. However, as
most existing studies [3, 7] assume that each node knows the access rate for each data item
in advance, we also follow it. We assume that the query condition includes a kind of data
(e.g., victim information) and its attribute (e.g., injury level). The query condition actually
has no restriction since the proposed method is independent of it. In this article, we focus
on only single query condition, i.e., all query-issuers issue a specific type of queries. All
mobile nodes have opportunities to send top-k queries, i.e., to become query-issuers when
they want.

We assign a unique data identifier to each data item in the system. The set of all data
items in the system is denoted by d = {d1, d2, · · · , dD}, where D is the total number of
data items and di(1 ≤ i ≤ D) is a data identifier. We define the subscript of d as the rank
(i.e., d1 has the highest score and dk has the k-th highest score). Each data item is initially
retained by a specific node, and all data items are assumed to be the same size and not to be
updated for simplicity.

We assign a unique node identifier to each mobile node in the system. The set of all nodes
in the system is denoted by m = {m1,m2, · · · ,mM }, where M is the total number of nodes
and mi(1 ≤ i ≤ M) is a node identifier. Each mobile node moves freely, however, no nodes
leave from the network and no additional nodes join. We assume network partitioning does
not occur. Each node can allocate ρ data items as replicas. For simplicity, ρ is same for all
nodes. Every mobile node has a communication device with communication range R, and
recognizes its own location by using a positioning system such as GPS. We do not care about
differences in devices (e.g., smart phone and tablet), but we assume that all nodes are the
same type of device. Mobile nodes use only a small portion of their storage for replication
(i.e., ρ is very small) since mobile nodes issue only one specific type of query.

Note that we employ several assumption for simplicity to solve fundamental problems
to process top-k queries and replicate data items in MANETs. However, our proposed
approach works well without some assumptions. In Section 5, we discuss extension of our
proposed approach to adapt to general situations.

3.2 Problem formulations

Problems of top-k query processing, replication, and MANETs are intricately intertwined.
In this section, we analyze the problems.

3.2.1 Problems for top-k query processing in MANETs

The query-issuer transmits a query message with the given query condition and k over the
entire network, in order to acquire k data items with the highest scores.

Definition 1 Given the set of data d, the set of mobile nodes m, the number of data items
k, and a query condition, a top-k query problem is to acquire k data items with the highest
scores (top-k result), with the least overhead and delay.

In top-k queries, the query-issuer does not designate the data identifier, so it cannot judge
whether the received data items are perfectly accurate or not even if it receives k data items.
More specifically, because of packet losses, some data items within the k-th rank may be
missing and others outside the rank can be included in the result. If each node knows the
data identifier of the top-k result, it guarantees the exact answer and also effectively allo-
cate replicas. Thus, in our framework, first a node collects the top-k result and distributes
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information on the top-k result to all nodes in the MANET, and each node determines
replicas based on the information.

Our goal is to develop efficient algorithms for top-k query processing in MANETs. We
consider several performance measures in designing our algorithms: (1) accuracy of query
result (higher is better), (2) communication overhead (smaller is better), and (3) delay to
acquire the top-k result after issuing a query (smaller is better). The accuracy is the most
important measure because if the accuracy is very low, small overhead and delay have no
meaning, so a better goal is to keep the perfect accuracy and decrease the overhead and
delay as much as possible. Moreover, there is a trade-off between the overhead and delay,
and thus we should consider together. Both communication overhead and delay decrease
when the number of nodes that must be accessed in order to acquire the result decreases.
Because, if the number of nodes that must be accessed is small, the query-issuer can acquire
the result from only nearby mobile nodes. Therefore, in this paper, the optimal data allocation
reduces the average number f (k) of nodes that must be accessed to acquire the result over
the entire system.

Definition 2 The optimal data allocation for top-k queries over MANETs achieves the
smallest f (k), which is calculated based on the following equation:

f (k) =
K∑

i=1

p(ki) · f (ki), (1)

where f (ki) is the average number of nodes that must be accessed when the query-issuer
designates ki .

3.2.2 Replication problems for top-k queries

Replication strategies for single data item access are not effective for top-k queries. This is
because the access ratio for data items in a top-k query is strongly biased (e.g., d1 is always
accessed). For example, Square root replication [3] has been proposed as possible means of
determining the optimal number of replicas for single data item access in unstructured P2P
networks. Square root replication establishes the optimal ratio of replication for di based on
the following equation:

ri =
√

qi
∑kK

j=1
√

qj

and l ≤ ri ≤ u (2)

where qi is the access rate for di , kK is the maximum k, and l (≥ 1
M·ρ ) and u (≤ 1

ρ
) denote

the minimum and maximum ri (every data item must be replicated by at least one node, and
every node must not allocate more than one replica of the same data item).

In top-k queries, data items with higher ranks are more frequently accessed than those
with lower ranks. Therefore, the ratio of replication for di is higher than that for di+1.

ri ≥ ri+1. (3)

However, if we use a simple strategy which the ratio of replication is determined based only
on the access rate, the data items with high ranks are allocated too much, resulting in a
lack of diversity of replicas. In that case, if large k is specified and the query-issuer needs
to acquire data items with low ranks, both overhead and delay may increase. Moreover, a
replication strategy for single data item access does not take into account the fact that in
top-k queries, some data items are dependently accessed, i.e., data items with similar ranks
are often accessed by the same query.
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3.2.3 Replication problems for MANETs

In MANETs, the overhead involved in query processing is significantly lessened when the
necessary data items are replicated near the query-issuer. Therefore, location-based repli-
cation has been proposed in MANETs and WSNs. Here, the overhead required for query
processing is calculated based on the following equation:

cost =
∑

x∈m

K∑

i=1

p(ki)

ki∑

j=1

hop(x, dj ) (4)

where hop(x, dj ) denotes the number of hop counts between the query-issuer (x) and the
node that retains a replica of dj . Optimal replication achieves the minimum cost , but it
is known to be an NP-hard problem. Moreover, nodes move freely in MANETs, and thus
the optimal replication changes dynamically. In addition, since the number of neighboring
nodes changes dynamically, the search area for acquiring necessary data items cannot be
known in advance. It may be possible to reallocate replicas every time mobile nodes move,
but it involves significant overhead instead of query processing. Therefore, a strategy is
needed which involves no maintenance overhead even if nodes move, and it determines the
relevant search area on the fly. Here, it should be noted that perfect optimal replication is
impossible in MANETs unless all nodes know all nodes’ mobility patterns, query timings
and the network topology.

4 Framework for processing top-k queries with replication

In this section, we first describe design policy of our framework. Then, we present the replication
strategy, the initial collection and distribution methods, and the top-k query processing method.

4.1 Design policy

We design our replication strategy and query processing methods for top-k query based on
the following policy. To achieve small f (k) in Eq. (1), we aim at reducing the number of
hop counts for retrieving the result. This is because if the number of hop counts is small,
both f (k) and the cost in Eq. (4) become small.

A naive approach is that we uniformly allocate data by taking into account the network
topology and locations of mobile nodes. However, since the network topology of MANETs
dynamically and frequently changes, we need to reallocate when mobile nodes move. Since
this reallocation takes a large overhead, we need an approach without reallocation. For avoiding
reallocation, we do not use the topology information and locations of mobile nodes.

We allocate data based on the probabilities of data access to keep a variety of allocated
data. If we simply use the probabilities of data access such as Eq. (2), allocated replicas
lack the diversity. Thus, to determine the ratio of allocated data, we do not use the access
rate for data items, but we use the probability of the number of requested data k. In addi-
tion, in MANETs, the mobile nodes freely move, and then the neighbor nodes frequently
change. While, the number of neighbor nodes is relatively constant compared with the net-
work topology. As a result, we calculate the ratio of allocated data by using based on the
probabilities of k and the number of neighbor nodes.

Although we achieve efficient data allocations, mobile nodes do not know the locations
of mobile nodes that have their necessary data items. Therefore, we need to decide a search
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range represented by the number of hop counts. If the number of hop counts is small, we
may need to iteratively send messages until receiving the result of a top-k query. On the other
hand, if the number of hop counts is large, data may be replied back from far mobile nodes
which causes the large overhead. Above two cases have a trade-off between the overhead
and the delay. Hence, we develop two message processing methods; expanding ring method
and bundling method, which are inspired by our previous work [22]. Expanding ring method
gradually increases the number of hop counts one by one until receiving the result. The
expanding ring method reduces an overhead for query processing. On the other hand, the
bundling method first collects data from one hop nodes, and then it increases the number
of hop counts by using the information of the number of nodes around itself. The bundling
method reduces a delay for query processing. Of course, both method can reduce the number of
hop counts because of our replication strategy. By the combinations between our replication
strategy and message processing methods, we can efficiently process the top-k query.

4.2 FReT: replication strategy

In our replication strategy FReT, mobile nodes allocate replica block which is the set of
data with consecutive ranks. The replica block is allocated based on replica ratio which is a
probability that replica block is allocated. We first explain the replica block and the replica
ratio, and then we describe an algorithm of FReT.

4.2.1 Replica block

In top-k queries, data with similar ranks are accessed together with a high probability for a
given k. Therefore, each node allocates ρ data with consecutive ranks (i.e., d1 through dρ ,
dρ+1 through d2·ρ , · · · , and d

(� kK
ρ

�−1)·ρ+1
through dkK

). We call a set of ρ data with consec-

utive ranks replica block b ∈ bi (1 ≤ i ≤ � kK

ρ
�). Each mobile nodes allocate replica blocks.

4.2.2 Replica ratio

Each replica block is allocated based on the replica ratio p(b) which are the probabilities
that the replica blocks are allocated (e.g., p(b1) is the replica ratio for b1). In our replication
strategy, the replica ratio is calculated for efficiently processing top-k queries. The query-
issuer can acquire the result from a small number of nodes if we efficiently allocate the
replica block.

The number of nodes that are accessed depends on both of the number of neighbors of
each node (i.e., nodes within its radio range) and the number of hop counts from a given
node. When the numbers of hop counts and/or neighbors are large, the number of nodes that
are accessed is large. Given the number of hop count h, we calculate the expected number
Mh of nodes that are accessed based on the following equation:

Mh = 1 + Ma ×
h∑

j=1

j (5)

where Ma denotes the average number of neighbors for all nodes (Ma is able to be aware
after an initial collection described in next section). In this equation, we assume that nodes
uniformly exist, and all nodes have the same number of neighbors (Ma). If the number of
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neighbors is extremely large, this estimation is not very precise, but we do not assume that
the number of neighbors is not much large.

Next, we define p(ki, Mh) as the probability that the top-ki result is acquired by
accessing Mh nodes:

p(ki,Mh) = 1 − (p(b1) + · · · + p(b� ki
ρ

�))

+(p(b1) + p(b2) + · · · + p(b� ki
ρ

�−1
) + p(b� ki

ρ
�))

+ · · ·
+(−1)

� ki
ρ

� · p(b1) + · · · + p(b� ki
ρ

�) (6)

where x denotes (1 − x)Mh . This equation calculates the probability of a complementary
event that a given node cannot access replica blocks: p(b1) to p(b� ki

ρ
�). If Mh is less than

� ki

ρ
�, p(ki, Mh) becomes 0. p(ki,Mh) increases as Mh (i.e., h) increases, because the prob-

ability that the node cannot access necessary data decreases. On the other hand, a large
Mh indicates a large overhead. Thus, smaller Mh which achieves larger p(ki, Mh) is better.
We determine the optimal h for processing top-ki queries so that we achieve the smallest

Mh

p(ki ,Mh)
. p(ki,Mh) increases when data d1 through dki

are frequently allocated (i.e., p(b1)

to p(b� ki
ρ

�)). However, if we prioritize only small k, the diversity of allocated data decreases

because data items with high ranks significantly increases.
Therefore, we should calculate Mh for every ki , Mhi

, to totally achieve a small number
of nodes that must be accessed in the entire MANET. For this aim, we calculate f (k) based
on the following equation:

f (k) =
K∑

i=1

(
p(ki) · Mhi

p(ki,Mhi
)

)
. (7)

If f (k) is minimized, the query-issuer can acquire the top-k result by searching a small
number of nodes with a high probability. Therefore, in our replication strategy, the replica
ratio is established so as to achieve minimum f (k).

4.2.3 Algorithm of FReT

To calculate f (k), we recursively calculate Mh at the various p(b). Algorithm 1 shows
the pseudo-code to establish f (k). In this algorithm, δ denotes a parameter value which
shreds p(b) evenly. A smaller δ can calculate more precise replica ratio, but increases the
computation cost. We can control δ based on a computational power of mobile nodes. The
algorithm iteratively computes f (ki)h for each ki and h until f (ki)h ≥ f (ki)h−1 (lines 4 –
7). Since f (ki)h first decreases and then increase, f (ki)h−1 is the minimum value when it
satisfies that f (ki)h ≥ f (ki)h−1. It keeps the minimum f (ki) for each i, and then f (k) is
calculated by summing all f (ki) for a given p(b) (lines 8 – 13). We calculate all patterns
of p(b) (recall that p(bi) ≥ p(bi+1)) (line 17). To reduce the computation cost, the bi with
a same access ratio are calculated at once. Finally, after all patterns of p(b) are checked, it
returns p(b) with minimum f (k).
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The time complexity of FReT is as follows.

Theorem 1 Given the maximum hop hm, ρ, k, and δ, the time complexity of FReT is

O

⎛

⎝K · hm ·
(

�kK

ρ
� · 1

δ

)� kK
ρ

�
⎞

⎠ . (8)

Proof The algorithm of FReT iteratively computes f (ki)h for the number of requested data
items, the number of hop counts, and patterns of p(b). The patterns of p(b) are permutations
of the probabilities with constraints such as p(bi) ≥ p(bi+1) and sum of p(b) is one. The

number of patterns of p(b) is O
(
� kK

ρ
� · 1

δ

)� kK
ρ

�
. Therefore, the computation cost of FReT

becomes Eq. (8).

Here, the maximum hop is computed from the size of area and communication range
practically.

Example 2 Let ρ be 5, Ma be 10, ki(i = 1, · · · , 4) be {25, 50, 75, 100}, p(ki) be
{0.25, 0.25, 0.25, 0.25} and δ be 0.001. The number of replica block is 20 (= � kK

ρ
� =

� 100
5 �). Here, since b1 through b5 (denoted by b1−5 for short) are accessed with a same

probability, they have same replica ratio. Similarly, b6−10, b11−15, and b16−20 have the same
replica ratio, respectively. Hence, we calculate the four kinds of replica ratios to reduce a
computation cost. Finally, p(b1−5), p(b6−10), p(b11−15), and p(b16−20) are 0.07, 0.052,
0.042, and 0.036, respectively.

FReT is a high robust replication strategy because the replica ratio does not sensitively
change unless the network topology significantly changes. FReT establishes the replica
ratios only based on the average number of neighbors for all nodes and access rates, which are
relatively constant. Since locations of nodes and the network topology frequently change in
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MANETs, we do not use locations and topological information of nodes for our replication
strategy. Thus, our replication strategy achieves high robustness for moving nodes.

4.3 Initial collection and dissemination

To optimally allocate replicas, each node should know the network information in the entire
network and the data identifiers of the top-k result. Therefore, our framework collects and
disseminates the network information and the identifiers of the top-k result. We call the
processes for collecting and distributing data initial collection and initial dissemination,
respectively. In these process, the node which is the first query-issuer, mc, becomes a coor-
dinator. In the initial collection, mc transmits an initial message to every node. Then, every
node replies back their location and data items with high scores that are possible to be the
top-k result. To reduce the overhead for initial collection as possible, we employ a combina-
tion of the top-k query processing method in [6] and the location-based flooding method in
[15].2 After mc completes the initial collection, it knows the top-k result and calculates the
average number of neighboring nodes. To calculate the number of neighboring nodes, mc

simply compares the distance between all pairs of two node, and if the distance is within R,
the two nodes are neighbor nodes each other. In the initial dissemination, mc disseminates
the top-k result and the average number of neighboring nodes by an existing flooding tech-
nique. Receivers store the data identifiers and scores of top-k result and the average number
of neighboring nodes. Each node calculates the replica ratio based on FReT, and allocates
replicas. Receivers are aware of the top-k result, but since their storage has a limit, they store
only the data identifiers and scores instead of whole data items, except for their allocated replicas.

Here, we discuss the costs of initial collection and dissemination. The cost of initial
collection equals to the cost of top-k query processing to retrieve the kK data items without
replication. This is because the initial collection is equivalent to process the top-kK query
for acquiring the data items with the kK highest scores. The cost of initial dissemination
equals to the flooding for sending the kK data items. In the naive initial and dissemination
methods, the cost is O(kK · M) because each node sends the kK data items. As mentioned
above, our initial and dissemination methods reduces the cost by using existing top-k query
processing and the location-based flooding, respectively. The effects of our methods are
shown in Section 6.3.3.

4.3.1 Algorithm of initial collection

Algorithm 2 is the pseudo-code for initial collection. In Algorithm 2, the coordinator mc

sends the initial message to its neighbors (line 1). If node mr receives the initial message, it
stores the information on the initial message, and then sets a query timer to determine when
it sends its initial message (lines 3 – 6). Before expiring the time, mr overhears the reply
messages that other nodes send and stores the replied data items for efficiently collecting
the top-k result (line 7). If mr expires its query timer, it calculates communication ranges of
sender nodes. If the communication range of mr is not covered by other sender, it sends the
initial message (lines 9 – 13). If the communication is covered, it sends a reply message to
its parent (i.e., the node that send the initial message to mr ) (line 15). Then, if mr expires
a reply timer for reply message or receives replies from all of its children, it sends its reply

2The reason that we select the top-k query processing method proposed in [6] is that this method does not
require any information in advance of query processing
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message to its parent (lines 18 – 20). If mc receives replies from all its children, it starts the
initial dissemination phase (lines 21 –23). On the other hand, if mc waits a predetermined
maximum wait time, it resents the initial message (lines 24 – 26).

Example 3 Recall the example in Section 4.2. Each node receives Ma (= 10) and the data
items with top 100th scores. It calculates the replica ratio, and then selects and replicates one
of the replica blocks. For example, to select a replica block, nodes generate a random value
whose range is [0, 1], and then replicate data items according to the selected replica block.
Note that nodes can select a replica block to surely follow the replica ratio (e.g., by using the
identifiers of mobile nodes) without randomness because we assume a collaboration work
such as a rescue operation.

4.4 Top-k query processing

In this section, we describe how to process top-k queries. We first explain contents of mes-
sages and a method for message processing. Then, we explain two methods for increasing
the TTL; the expanding ring and bundling methods.
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4.4.1 Query and reply messages

Our message processing method has two phase. The query-issuer initially sends a first query
in the first phase, and then repeatedly sends a reiterate query until the result is acquired in
the second phase. We explain the contents of the first query message, the reiterate query
message, and the reply message, respectively. The first query message, FQ, includes the
identifier of the query-issuer, the identifier of the query, a query condition, k, the list of data
retained by the query-issuer (listq ). The reiterate query message, RQ, on the other hand,
includes the identifier of the query-issuer, the identifier of the query, the identifiers of the
demanded data, the identifier of the sender of the message, the position of the sender of
the message, and the hop count T . Both reply messages include the identifier of the query-
issuer, the identifier of the query, the identifier of the sender of the message, the identifier of
the node that previously sends the message before the sender, and the list of reply data (dr ).

There are three main differences between the first query and the reiterate query. First,
the former designates k and a query condition, but the latter designates demanded data.
This is because the combined size of k and the query condition is less than that of all the
identifiers of demanded data, but the query-issuer cannot designate only demanded data
in the reiterate query by designating k and the query condition. In the first query, we use
listq to reduce the number of such duplicate reply data. This is because duplicate reply data
may be sent in reply messages from nodes though the query-issuer has those replica block.
Second, the latter uses location-based flooding, but the former does not. This is because the
reiterate query in which the hop count is large has more chance of employing location-based
flooding, but the first query in which the hop count is one does not. Thus, in the case of the
first query, the location information unnecessarily increases the message size. Finally, the
latter sets the hop count to expand the search range, but the former does not set (i.e., the hop
count is always one). It has two reasons; to acquire the exact result from nearby nodes, and
to know the current number of neighboring nodes as soon as possible.

We here explain that the reiterate query is effective for reducing the overhead. Let sup-
pose that the size of identifier of mobile nodes, identifier of data items, the identifier of the
query, a query condition, k are the same. We mentioned above that the first query includes
k, a query condition, and listq , while the reiterate query includes the identifiers of the
demanded data. Thus, when query-issuers have necessary k

2 −1 data items for top-k queries,
the reiterate query is more effective than the first query. Additionally, the reiterate query
includes the location for using the location-based flooding. Let suppose that the size of loca-
tion increases α percentages of reiterate queries. If the location-based flooding reduces α

percentage, it works well to reduce the overhead.

4.4.2 Algorithm of query processing

The processing methods of the first query and the reiterate query are shown in Algorithms
3 and 4, respectively. In both algorithms, mq and mr denote the query-issuer and a node
that receives a query message, respectively. In Algorithm 3, if mq already has the data
items with k highest scores, the query is terminated without sending any messages (lines
1 – 2). Otherwise, mq sends the first query to its neighbors (lines 3 – 4). If mr receives
the first query, it stores the information on the first query such as k, the query condition,
and listq , and then sets a timer to determine when it sends its reply message (lines 6 –
9). Before expiring the time, mr overhears the reply messages that other nodes send and
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stores the replied data items dr for avoiding sending the same data items (lines 10 – 12).
After expiring the timer, mr sends the reply messages that include its replicas that are not
included listq and are not overheard to mq (lines 13 – 18). Here, even if it has no replied
data items, it sends the reply message to know the number of neighbors. If the query-issuer
mq receives all the data items with k highest scores, the query is terminated (lines 19 – 21).
If mq waits the maximum time for reply timer, it stores the number of nodes that sends the
reply messages for computing the TTL of the bundling method (lines 22 – 23). Then, it
sends reiterate queries (lines 24).

In Algorithm 4, mq sends the reiterate query (line 1). If mr receives the reiterate query
first time, it stores the information on the reiterate query and decrease TTL in the received
reiterate query (lines 2 –5). If it has the demanded data items, it sends a reply message to its
parent and updates the demanded data items (lines 6 – 10). Then, if TTL is larger than zero
and the demanded data items is not null, it sends the reiterate query and sets a timer (lines 11
–14). mr also updates its neighbor nodes regardless that it receives the reiterate query first
or not (line 16). If mr expires the timer, it calculates communication ranges of sender nodes.
If the communication range of mr is not covered by other sender, it sends the reiterate query
(lines 18 – 23). Then, if mr receives a reply message, it updates the replied data items for
avoiding sending the data items that are already sent to the parent or sent by other nodes
(lines 24 – 27). If the replied data items are not null, it sends the reply message to its parent
(lines 28 – 29). mr also overhears reply messages that are not sent to mr to know the data
items that are sent by other nodes (line 31 – 32). If mq receives the data items with the k

highest scores, the query is terminated (lines 34 – 36). Otherwise, it resends the reiterate
query with increasing TTL after waiting the time computed from the TTL (line 37 – 40.)
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4.4.3 Methods for increasing TTL

We propose the expanding ring method and the bundling method. The difference between
the two methods lies in the means of setting the TTL.

The expanding ring method was proposed for unstructured P2P networks in [14]. It
increases the TTL gradually to minimize the number of nodes that are accessed. In our ver-
sion of the expanding ring method, the TTL of every first query is set as 1, and the TTL
of the reiterate query is set as the previous TTL plus 1. The simple modification makes it
possible to minimize the number of reply data items.

The bundling method largely increases the TTL at once. In the method, the query-issuer
sets the TTL based on the current number of neighboring nodes Mc. The TTL of the first
query is set as 1 because the query-issuer does not know its Mc in advance. After the first
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Fig. 1 Differences in TTL between the expanding ring and bundling methods

query, since the query-issuer now knows its Mc, it increases the TTL of the first reiterate
query at once. The TTL is determined to fulfill the following equation when the query-issuer
designates ki as k:

Mc ×
T T L∑

j=1

j >
Mhi

p(ki, Mhi
)

(9)

where Mhi
and p(ki, Mhi

) are the expected number of nodes that must be accessed in order
to acquire the data items with ki highest scores and the probability that the top-k result is
acquired by searching Mhi

nodes in Eq. (7), respectively. This equation calculates the TTL
(≥ 2) that the query-issuer acquires the top-k result with high probability and small number
of nodes that are accessed, based on the current number of neighbors. If the query-issuer
cannot acquire the top-k result using this TTL, then it increases TTL by 1. This method can
increase the TTL at once, potentially lessening the delay.

Figure 1 shows an image of increasing TTL in the two methods. In Fig. 1, orange and
white devices denote the query-issuer and receivers, respectively. Dashed and solid cir-
cles denote the search areas of the first and reiterate queries, respectively. In Fig. 1a, the
expanding ring method increases the TTL by one until the query-issuer receives the top-k
result. Thus, the search area in the expanding ring method expands gradually. In Fig. 1b, the
bundling method has a large TTL of the first reiterate query because the number of neigh-
bors is small. After increasing the TTL of the first reiterate query, the bundling method
increases the TTL by one until the query-issuer receives the top-k result as well as the
expanding ring method.

The difference between these methods is the TTL of the first reiterate query. In the
expanding ring method, the TTL of the first reiterate query is always two even if the net-
work is very sparse. On the other hand, the bundling method changes the TTL of the first
reiterate query depending on the number of neighboring nodes of the query-issuer, that is
the density of nodes. The density of nodes affects the number of hop counts for retriev-
ing the top-k result. If the network is dense, the number of hop counts becomes small. On
the other hand, if the network is sparse, the number of hop counts becomes large. We can
compute the probability that the query-issuer acquires the top-k result by Eq. (6). The num-
ber of accessed nodes Mh in Eq. (6) is computed from the current number of neighbors
and the specified TTL. When the density of nodes is small, the number of reiterate queries
increases. Thus, the delay in the expanding ring method may increase while it achieves a
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small overhead. Meanwhile, the bundling method can effectively reduce the delay compared
with the expanding ring method. However, due to an excessive increase of TTL, the num-
ber of reply data items is basically greater than that in the expanding ring method. The two
methods have a tradeoff between delay and overhead.

5 Extension techniques

In this section, we explain two extension techniques for our framework; location-based
allocation and data update.

5.1 Location-based allocation

Our framework does not use location information for avoiding maintenance costs due to
movement of nodes. It is very efficient because nodes basically move frequently. However,
if nodes do not move frequently, the location-based allocation is efficient. Thus, we propose
an allocation technique based on location information.

When we use location information for allocating replicas, a grid-based replication is a
basic approach [12]. Thus, we propose a grid-based allocation whose grids are hexagon; a
regular hexagon fills the most fraction of its circumscribed circles among polygons that can
tile the plane (see Fig. 2). First, let us describe the deployment of hexagonal grids. The grids,
g(i, j), cover the area and are deployed next to neighboring inscribed hexagons. The i and
j in the grid identifier, g(i, j), correspond to the column and the row numbers, respectively.

Each node determines what data items are allocated based on the grid that it belongs to.
We allocate the replicas so that each node retrieves the kα highest scores from its grid and
kK highest scores from its and neighboring grids. We set kα to the number that satisfies∑α

i=1 p(ki) ≥ 0.5. Thus, each grid should include kα + kK−kα

7 /ρ nodes. This is because our
approach searches for kK data items with the highest scores from nodes in seven grids. The
diameter of grid is the minimum i ·R(i = 1, 2, · · · ) that all grids include (kα +� kK−kα

7 �)/ρ
nodes. Since R is the communication rage of nodes, we increase the diameter based on
R. We allocate data items to grids according to the replica ratio. In more concretely, we
determine allocated replicas from identifier of grids g(i, j). Here, since the grid does not

Fig. 2 Grid deployment

g(0,0) g(0,1) g(0,2) g(0,3)

g(1,0) g(1,1) g(1,2)

g(2,0) g(2,1) g(2,2) g(2,3)

g(3,0) g(3,1) g(3,2)

g(4,0) g(4,1) g(4,2) g(4,3)
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typically tile the whole area and some nodes do not belong to any grids, such nodes allocate
replicas following the replica ratio. We can efficiently search for top-k data items by the
grid-based initial allocation if nodes do not move.

Reallocation is needed when a node leaves its own grid. A node notifies nodes in the
source grid that it is leaving and nodes in the destination grid that it is participating, respec-
tively. The node sends a moving message to neighboring nodes when it leaves its own grid.
The moving message is attached to replicas that should be reallocated, data item identifiers
whose replicas it has, the available space information on this nodes (the time that it deletes
the replicas), and grid identifiers of the source and destination grids. A node that received
the message in the source grid allocates the received replicas if it has available space. A node
that received the message in the destination grid removes data items attached to the message
to reduce the message size and it attaches the information of its own grid to notify the infor-
mation to moving node after updating the information of the grid. Both nodes in the source
and destination grids transmit messages to their neighboring nodes when the grid size is
more than 2 · R. Each node can know the information of its own grid with this procedure.

We here discuss the tradeoff between methods with and without using locations. Let pm

be a probability that nodes move out from their areas and om be an maintenance cost for the
movement. In addition, let oq be the difference of overheads for query processing between
method with and without using locations. pm · om can be considered as the average main-
tenance cost for the movements. If pm · om is smaller than oq , the location-based approach
works well. Otherwise, the location-based approach suffers a large maintenance cost even
if it can reduce the overhead for query processing.

5.2 Data update

When data items are updated, the top-k result may change. In this case, it is difficult to
guarantee the perfect accuracy of the query result. Our framework easily can adapt to the
data update. We have three procedures for handling data update; (1) initial collection and
dissemination, (2) message processing for data generation, and (3) message processing for
data deletion.

Initial collection and dissemination: It takes a large cost to find new top-k data when
data items in the top-k result are deleted. For avoiding searching for new top-k data from
scratch, in the initial collection, the coordinator collects the data items with (kK+margin)
highest scores. margin is a positive integer which is computed from probabilities that
data items in the top-k results are deleted. The probability is computed from kK the ratio
of data update. In the initial dissemination, the coordinator disseminates the data items
in the same way, and then each node replicates these data items.

Message processing for data deletion: When a node deletes data items with kK +
margin highest scores, the node must notify all nodes of the deletion because the top-k
result changes. Thus, it sends a deletion message in the network to notice the deletion
of the data items. The deletion message contains the identifier of the deleted data items.
All nodes that receive the message changes the scores of top-k result and data items in
the margin. If they have the deleted data items as replicas, it deletes the replicas. Even
if some data items in the top-k result are deleted, we do not need to search for new data
items, because nodes allocate additional data items with kK + margin highest scores.
Thus, we can guarantee the top-k result without reallocation.

Message processing for data generation: When a node generates new data items with
kK +margin highest scores, the top-k result changes. Thus, it sends a generation message
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in the network to notice the generation of the data items. The generation message contains
the new data items. All nodes that receive the message changes the scores of top-k result
and data items in the margin. If nodes have replicas that become out of data items with
kK +margin highest scores, the nodes having those replicas replace them with new ones.
If data items are deleted before generation, nodes that have spaces to allocate replicas
replicate the new data items. This approach does not need to exchange extra messages
and data items among nodes.

6 Performance evaluation

In this section, we summarize the results of experiments evaluating performance of our
framework.

6.1 Experimental model

For the experiments, we used the network simulator, QualNet5.2, which takes into account
the effect of physical layer (i.e., packet losses and delays occur due to radio interference).3

Mobile nodes are present in an area of 1000 meters × 1000 meters. The initial position of
each node is determined randomly. The number of mobile nodes is M (default setting is
500). The nodes move according to the random-walk model, with a random velocity range
of 0.5 to v (default setting is 1) meters/second (when v is 0, nodes are stationary). Each
mobile node transmits messages (and data items) using an IEEE 802.11b device, with data
transmission rate of 11 Mbps. The transmission power of each mobile node is set such that
the radio communication range R is roughly 100 meters.

Each mobile node retains 100 data. The size of a data is s (default setting is 128) bytes.
Each mobile node can allocate five (ρ = 5) data in its storage. Every mobile node issues
a top-k query every I (default setting is 30) seconds, where k is set as 25, 50, 75 and 100
based on the two access models (uniform and Zipf-like). In the uniform model, each k is
designated with the same probability (25%), and in the Zipf-like model, 25, 50, 75, and 100
are respectively designated with the probabilities of 80%, 10%, 5%, and 5%. respectively.

In this experiments, a node which is randomly selected performs initial collection and
distribution at the start of simulation. After 100 seconds, we evaluate the following criteria
over 300 queries (i.e., simulation time is 100 + I × 300 seconds).

– Accuracy of query result: the average ratio of (the number of data acquired by the query-
issuer, which are included in the exact result) to (the number of requested data, k).

– Delay [second]: the average elapsed time after the query-issuer issues a top-k query
until it acquires the result.

– Query overhead [Kbytes]: the average volume of query and reply messages (i.e., total
volume during the simulation divided by 300). The size of each message is shown in
Table 2. In this table, i1, i2 and i3 respectively denote the number of the demanded data,
the number of data included in the reply, and the number of data that a node pushes.

– Initial overhead [Kbytes]: the total message volume for initial collection and dissemi-
nation.

3Scalable Networks: makers of QualNet and EXata, the only multi-core enabled network simulation and
emulation software. [Online]. Available: http://www.scalable-networks.com/.
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Table 2 Message size
Message Value [bytes]

First query 36

Reiterate query 36+4 · i1

LACMA’s query 40

Reply (all methods) 24+s · i2

Push message (LACMA’s maintenance) 32+s · i3

6.2 Baselines

We implemented location-based replication methods for comparison with our methods: the
expanding ring and bundling methods (graph legends are ER proposed and B proposed,
respectively). We set δ to 0.0001.

1. LACMA (graph legend is LACMA): Data are replicated in a specific grid (replica ratio
is also introduced), and the replicas are maintained to bind a specific grid. When a node
leaves its own grid, it pushes the data that should be bound to the grid, and deletes the
data from its storage (graph legend “LACMA M” represents the average maintenance
overhead per query interval (30 seconds)). Nodes receiving the data replicate the data if
they have available storage. In the query processing, the query-issuer floods a message
into its own grid to acquire the top-k result. However, when the query-issuer cannot
acquire the result by a pre-determined time that is computed from the grid size, it gives
up to acquire the exact result. In this experiments, the grid size is determined based on
the access frequency of k and the number of nodes.

2. Reiterate LACMA (graph legend is ReLACMA): After acquiring the result by using
LACMA, the query-issuer repeatedly sends a reiterate query in the same way as our
methods until the exact result is acquired. The number of hop counts of the first reiterate

query is � grid width·√2
R

�, and then it increases by 1.

In addition, we implemented two replication strategies for comparison with our replica-
tion strategy.

1. Uniform allocation: All the kK best data are allocated with the same probability.
2. Square root allocation: Data are allocated based on the replication ratio proposed in [3].

In two strategies, we employ the proposed methods for query processing (graph legends
for the expanding ring and bundling method with uniform allocation and the expanding
ring and bundling methods with square root allocation are ER UNI, B UNI, ER SQRT, and
B SQRT, respectively).

6.3 Experimantal results

6.3.1 Efficiency of our framework

First, we examine the efficiency of our framework. In this section, we vary the number of
nodes, the maximum velocity of nodes, and the query interval. Moreover, we check the
performance in the case of that the access models are different.
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Fig. 3 Impacts of number of nodes in uniform access model

Impact of number of nodes The number of nodes mainly affects the number of neighbor
nodes. If the number of nodes is large, the query-issuer can retrieve the result from nearby
nodes with a high probability. That is, if the number of nodes increases, the overhead and
the delay should decrease. Figure 3 shows the experimental result by varying the number
of nodes M in the uniform access model. Figure 3a, b, and c show the accuracy of query
result, the delay, and the query overhead, respectively.

From Fig. 3a, we can see that the proposed top-k query processing methods achieve
perfect accuracy of query result. On the other hand, LACMA without reiterate query cannot
achieve perfect accuracy of query result due to the movement of nodes, the inhomogeneous
density of nodes, and packet losses. From Fig. 3b, the bundling method achieves the smallest
delay among all methods. This is because the bundling method expands the search area
to the area that contains the result with a high probability at once. The expanding ring
method also achieves a small delay because the search area is small though the number of
transmitted queries is large. When the number of nodes is large, the delay in the expanding
ring method is similar to that in the bundling method. This is because as the number of
nodes increases, the probability that the result is acquired within 1 hop increases. The delay
in LACMA is larger than that in the proposed methods, because, since the query-issuer often
cannot acquire the result, it has to wait for the pre-determined time limit. From Fig. 3c, the
expanding ring method achieves the smallest query overhead because of acquiring the result
from the minimum number of nearby nodes. The bundling method keeps similar overhead
to LACMA though it achieves the perfect accuracy of query result. The query overhead of
reiterate LACMA is significantly large, because in LACMA, nodes delete their own replicas
when they move out from their grids, and thus the search range becomes larger. Moreover,
in LACMA, the maintenance cost increases as the number of nodes increases.

From this result, we can confirm that our framework efficiently process top-k query
processing regardless of the number of nodes.

Impact of velocity If the velocity increases, the network topology frequently changes in a
small time duration. The location-based approach may need a large maintenance cost due
to the movement of nodes. Figure 4 shows the experimental result by varying the maximum
velocity v in the uniform access model. In the graphs, we show result of ReLACMA where
the maximum velocity is equal to or less than two because Reiterate LACMA does not work
well when the maximum velocity is larger than two.

From Fig. 4a, we can see that the proposed methods achieve perfect accuracy of query
result even if the maximum velocity increases. On the other hand, as the velocity increases,
the accuracy of query result decreases in LACMA because many nodes often move out from
their grids. From Fig. 4b, the proposed methods achieve better performance than LACMA.
Reiterate LACMA takes a long delay to acquire the result because the search range and the
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Fig. 4 Impacts of velocity in uniform access model

number of reiterate queries become large. From Fig. 4c, we can see that the query overhead
in the proposed methods is insensitive to the movement of nodes. In LACMA, when nodes
are stationary (v = 0), the query overhead in LACMA and the expanding ring method
with our framework are the smallest. Replicas in LACMA are allocated uniformly (i.e.,
geographically optimal allocation), while the search range is restricted to its own grid. Thus,
even if nearby nodes that belong to a different grid have necessary data, these nodes do not
send a reply, which result in less volume of replies than other methods. On the other hand,
the expanding ring method can acquire the result from the minimum number of nearby
nodes. As the result, the query overhead in LACMA and that in the expanding ring method
with our scheme become similar though their approach are different. If nodes move, the
locations of allocated replicas change, and thus, the query overhead increases. When the
velocity is large, the maintenance overhead becomes larger than the overhead for query
processing. This fact shows that LACMA is less robust against the movement of nodes in
terms of the accuracy of query result and the query overhead.

As a result, since our framework requires no network topology information and locations
of nodes, the performance of our framework is not affected by the velocity of nodes.

Impact of query interval The query interval affects the ratio between query overhead and
maintenance cost. If the query interval is large, the unnecessary maintenance cost happens
because mobile nodes do not often issue top-k queries. We check the effect of the query
interval to the strategy that needs maintenance of data. Figure 5 shows the experimental
result by varying the query interval I in the uniform access model. From Fig. 5, we can see
that the proposed methods constantly keep the high performance, while the performance
in LACMA decreases. This is because as the query interval increases, the simulation time
increases, and thus, nodes move out from their grid more often. As a result, replicas often
cannot be bound to a specific grid.

Fig. 5 Impacts of query interval in uniform access model
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Fig. 6 Impacts of data size in uniform access model

Impact of data size As the size of data increases, the size of reply message increases. Fur-
thermore, when the size of data is large, the delay increases because packet losses frequently
happens. Figure 6 shows the experimental result by varying the data size s in the uniform
access model. From Fig. 6, we can see that the proposed methods achieve high performance
in terms of all metrics. As the size of data increases, LACMA decrease the accuracy of
query result. This is because LACMA cannot receives necessary data items due to packet
losses. Our methods keep high performance even if the size of data is large.

Impact of access model In the case that access model is different, the efficiency may
change. We check the performance of our scheme if the access model changes. Figures 7,
8, 9, and 10 show the experimental result in the Zipf-like access model.

From Fig. 7a, the proposed methods achieve the perfect accuracy of query result even if
the access model follows the Zipf-like access model. On the other hand, in LACMA, the
accuracy of query result is lower than that in the uniform access model. This is because the
grid for data with 25th highest scores becomes very small, and thus, nodes frequently move
out from their grids. From Fig. 7b, the delays in the expanding ring and the bundling meth-
ods show more similar performance than that in the uniform access model. This is because,
since small k is frequently designated in the Zipf-like access model, the query-issuer can
likely acquire the result only from very nearby nodes. In ReLACMA, the delay increases
when the number of nodes is large. This is because the grid size becomes smaller as the
number of nodes increases, and thus, nodes frequently move out from their grids. From
Fig. 7c, the query overheads in the Zipf-like access model is smaller than that in the uni-
form access model because small k is frequently designated. In LACMA, the maintenance
overhead is larger than that in the uniform access model for the same reason the accuracy
decreases. This means LACMA does not work well in a strongly-biased access model.

Figures 8, 9, and 10 also show that our methods keep the high performance. On the other
hand, both LACMA and ReLACMA significantly decrease the performance compared with

Fig. 7 Impacts of number of nodes in Zipf-like access model
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Fig. 8 Impacts of velocity in Zipf-like access model

Fig. 9 Impacts of query interval in Zipf-like access model

Fig. 10 Impacts of data size in Zipf-like access model

Fig. 11 Difference among replica allocation strategies in uniform access model
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the result in the uniform access model. Therefore, since our framework can establish the
optimal allocation data, it achieves high performance even regardless of the access model.

6.3.2 Efficiency of replication strategy

Next, we examine the efficiency of replication strategies. In the above section, we show the
performance of our framework that combines our top-k query processing methods and our
replication strategy FReT. In this section, we show the result of our top-k query processing
methods based on the other replication strategies. Figures 11 and 12 show the result by
varying the number of nodes M in the uniform access model and the Zipf-like access model,
respectively.

From Fig. 11a, the bundling method with FReT achieves the smallest delay in all meth-
ods. The expanding ring method with FReT also achieves the small delay. This shows FReT
achieves an appropriate diversity of data. On the other hand, the square root allocation works
worse than the uniform allocation. This is because the square root allocation allocates too
much data of high-ranked data, and thus the number of reiterate queries increases. From
Fig. 11b, the expanding ring method with FReT achieves the smallest query overhead in all
methods, and the bundling method with FReT achieves a smaller query overhead than the
bundling methods with other replication strategies. The uniform and squire root allocation
strategies involve similar query overhead, which shows the average number of hop counts
from k data with the highest scores to the query-issuer is similar in both strategies in spite
of different replica ratios for data.

From Fig. 12a, FReT achieves the smallest delay. The uniform allocation poorly works in
the Zipf-like access model because data with low scores are unnecessarily allocated, while
data with high scores should be allocated more. From Fig. 12b, the expanding ring method
with FReT achieves the smallest query overhead in all methods, and the bundling method
with FReT basically follows it. This is because FReT uses the number of neighbors for
data allocation, and thus the query-issuer can acquire the result with a small number of hop
counts. On the other hand, the square root allocation unnecessarily allocates data with high
scores, and thus the query-issuer receives many duplicate data.

6.3.3 Initial collection and dissemination

We show the performance of the proposed initial collection and dissemination methods
compared with a naive method. In the naive collection method, each node employs a simple
flooding to send a query message, and then it sends back its own and received data items

Fig. 12 Difference among replica allocation strategies in Zipf-like model
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Fig. 13 Performance of initial collection and distribution

with kK highest scores. In the naive dissemination method, each node employs a simple
flooding to disseminate the collected information.

Figure 13a plots the performance measure in terms of initial overhead by varying the
number of nodes M . From this result, our collection and dissemination methods show
better performance than the naive methods because of reduction of the number of unneces-
sary replied data items and message transmission. The overhead in the proposed collection
method is smaller than that in the proposed dissemination method, because each node sends
less than kK in the proposed collection method, meanwhile must send kK data items in the
proposed dissemination method. The overheads in the naive collection and dissemination
methods are almost same because each node transmits kK data items. Figure 13b plots the
performance measure in terms of initial overhead by varying the data size s. This result also
show that our collection and dissemination methods can reduce the initial overhead.

6.3.4 Extension techniques

We evaluate performance for extension techniques, i.e., location-based allocation and data
update. In this experiment, we evaluate the accuracy of query result when the query-issuer
searches for k data items from its and its neighbor grids. We set that margin is 10 and data
size is 32 bytes. The query message includes grid IDs to search for data items from the
specified grids. From Fig. 14a, the location-based allocation keeps high accuracy without
sending reiterate queries.

The reason that it does not achieve the perfect accuracy is packet losses and movements
of nodes. From this result, the location-based allocation works well for retrieving the top-k
result.

Fig. 14 Performance of extension techniques
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From Fig. 14b, as the number of nodes increases, the overhead decreases except for the
case that k = 100 because the search range becomes smaller. When the number of nodes
further increase, the number of nodes that transmits the message and replied data items
increase. Thus, the overhead increases. In the case that k = 100, the overhead constantly
increases. This is because the search range gets smaller as the number of nodes increases,
but the amount of replied data items increases.

From Fig. 14c, the overheads related to movement of nodes and deletion and generation
of data items increase as the number of nodes increases. This is because the reallocation
frequent occurs when the number of nodes is large. When the number of nodes increases,
the size of grids becomes small. The movement of nodes leaving from their grids frequently
occurs, and thus the reallocation overhead becomes large. Overhead for data updates is not
large compared with query overhead and overhead for movements. Thus, our approach can
handle data updates with a small maintenance cost.

7 Conclusion

In this article, we proposed a framework for efficiently processing top-k queries with repli-
cation in MANETs. The proposed replication strategy for processing top-k query, FReT,
achieves good replica allocation to acquire the top-k result from a small number of nodes.
FReT involves no maintenance cost due to nodes’ movement. In the proposed top-k query
processing method, the query-issuer repeatedly sends a query message until it acquires the
perfect top-k result, by increasing the TTL that defines the search area by the number of hop
counts. The increase in the TTL is based on two complementary approaches: the expanding
ring and bundling methods. The expanding ring method can achieve the smallest number
of nodes that need to be accessed for acquiring the top-k result, while the bundling method
achieves small delay. Both methods can guarantee the exact accuracy of the query result. We
evaluated these methods through experiments which took into account the effect of the phys-
ical layer such as radio interference. The experimental results showed that our frameworks
achieves better performance than existing methods. The results also show that the expanding
ring method achieves small overhead, while the bundling method achieves small delay.
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