
Top-k Query Processing with Replication Strategy
in Mobile Ad Hoc Networks

Yuya Sasaki †, Takahiro Hara †, Yoshiharu Ishikawa ‡

† Graduate school of Infsormation Science and Technology, Osaka University, Japan
‡ Graduate school of Information Science, Nagoya University, Japan

{sasaki, hara}@ist.osaka-u.ac.jp, ishikawa@i.nagoya-u.ac.jp

Abstract—In this paper, we propose a method that fully
combines top-k query processing with replication strategy in
mobile ad hoc networks (MANETs). The goal is to acquire perfect
accuracy of query results with a minimal overhead and delay.
Currently, no replication strategy achieves efficient allocation of
replicas for top-k queries, and no top-k query processing guaran-
tees perfect accuracy of query results in MANETs. We propose
a new replication strategy FReT (topology-Free Replication for
Top-k query) and new top-k query processing methods. FReT
advantages efficient top-k query processing from limited search
area even if mobile nodes move. In our top-k query processing
method, the search area gradually increases until receiving an
exact answer. We demonstrate, through extensive simulations,
that our approaches function well in terms of small delay and
overhead.

Index Terms—top-k query, replication, mobile ad hoc networks

I. INTRODUCTION

Wireless communication technologies and computer devices
have grown remarkably in the past several decades. These
developments bring us a new network concept mobile ad
hoc network (MANET) [1], [2]. MANETs are opportunistic
networks, and composed of autonomous mobile nodes which
can communicate each other without any infrastructures. When
a mobile node sends to a message to another node which
is not within its radio range, other nodes relay the message
to successfully reach the destination node. From this feature,
MANETs are expected to be developed in many situation such
as a disaster site and a military field. MANETs have some
important factors to be widely used such as routing protocols
[3] and security [4]. One of the important factors is query
processing, but it has not been studied well. In this paper, we
focus on top-k query processing in MANETs, which computes
the k most relevant data items based on attribute values with
regard to a query condition. These fundamental queries have
been developed in many important applications such as (i) Web
and Internet search engines, for word-occurrence and text-
based relevance [5]; (ii) wireless sensor networks (WSNs), for
detection of statistical outliers [6]; and (iii) peer-to-peer (P2P)
networks, for sharing interesting contents [7]. Top-k queries
are also available in the field of MANETs. For example, in a
disaster area where the informational infrastructure (e.g., the
Internet) is disabled, numerous mobile rescuers can input on-

site information on victims and buildings into their computers,
and search for seriously-injured victims and badly-damaged
buildings. In this situation, due to a shortage of supplies or
manpower (e.g., the number of ambulances is 10 or the number
of rescuers is 50), it is desirable to acquire only important
information on the most seriously-injured victims or badly-
damaged buildings. However, few studies have investigated
the potential of top-k query processing in MANETs, though it
is a promising application involving a number of challenging
issues.

To process top-k queries in MANETs, if a mobile node
issues a top-k query (we call a mobile node which issues a
top-k query a query-issuer), the query-issuer basically needs
to send a query message to all nodes in the entire network,
because the query-issuer does not know which nodes have data
items included in an exact answer. However, this procedure is
quite inefficient. To avoid this inefficient procedure, we exploit
replication; each node replicates data items retained by other
nodes into its storage. Replication is promising in a MANET
environment [8] because it has the capability to improve data
availability and limit a search area. By using replication, the
query-issuer receives the answer from few nodes. Currently,
no study effectively combines top-k query processing with
replication in MANETs.

Therefore, we propose a novel top-k query processing
method, with replication strategy in MANETs, which is capa-
ble of guaranteeing the exact query results in a limited search
area. Mobile nodes replicate data items based on our proposed
replication strategy called FReT (topology-Free Replication
for Top-k query). In FReT, the ratio of the number of allo-
cated replicas (replication ratio) and combination of replicas
retained by each node (replica combination) are determined
to efficiently acquire the exact answer. Moreover, FReT has
no maintenance costs due to the movement of the nodes.
The query-issuer repeatedly sends the query message until
it acquires a top-k result, through increasing the TTL (time-
to-live) that defines the search area by a hop count. The
increase in TTL is based on two complementary approaches:
the expanding ring and bundling methods. The expanding ring
method aims at reducing the overhead; on the other hand,
the bundling method aims at reducing the delay. These two
methods can guarantee the acquisition of perfectly accurate



answer with less overhead and delay.
The contributions of this paper are as follows:
• Prior work does not effectively acquire an exact answer

in environments where mobile nodes hold replicas. The
proposed approach is the first method which combines
top-k query processing and replication in MANETs.

• We analyze problems of top-k query processing and
replication over a MANET environment.

• We formulate a replication strategy in which the query-
issuer can acquire an exact answer in a limited area. The
replication strategy has robustness for movement of nodes
and dynamical topology changes.

• We demonstrate, through extensive simulations taking
into account the effect of the physical layer, that our
approaches function well in terms of small delay and
overhead.

The remainder of this paper is organized as follows. Section
II introduces the related work. Section III provides prelimi-
naries. Section IV presents the proposed method. Section V
summarizes the results obtained in the simulation experiments.
Section VI concludes the paper.

II. RELATED WORK

There are existing works related to top-k query processing
and replication. First, we review some typical replication
strategies and cooperative caching protocols in MANETs.
Then, we review some typical top-k query processing pro-
tocols in a variety of networks such as P2P networks, WSNs,
and MANETs.

A. Caching and replication in MANETs

First, we review some cooperative caching protocols in
MANETs. In cooperative caching, mobile nodes store data
items when they receive the data items. On the other hand,
in replication, mobile nodes store data items as replicas in
advance. In [10], the authors proposed a form of cooperative
caching called ‘Hamlet’, aimed at creating diversity within
neighboring nodes, so that users would likely find required
data items nearby, and thus the network would be less vulner-
able to being flooded with query messages. In [11], [12], the
authors proposed a caching method for top-k query processing
in MANETs1. This method caches undue data items with
low scores, and it is difficult to determine an appropriate
random number without a knowledge of scores of all data
items. Thus, this caching method is far from optimal Moreover,
the authors [12] proposed top-k query processing method for
cached data items, but it does not efficiently processes top-
k queries because it basically floods query messages into the
entire networks.

Second, we review some data replication protocols in
MANETs. In [13], the author proposed three algorithms for
replica placement, to improve data availability. These algo-
rithms determine the allocation of replicas based on the access

1Although the proposed method in [11] is named a replication method, this
method is essentially a caching protocol because each node stores data items
when it receives data items.

frequency, the replicas retained by neighboring nodes, and the
network topology. In [14], the authors proposed a form of
location-based replication called ‘location-aided content man-
agement architecture’ (LACMA), which supports searches for
required data items in areas in which there is a high probability
of being found. In LACMA, data items are allocated to a
specific grid based on access frequency, and data items with
higher access frequency are specifically allocated to smaller
grids. When leaving the current grid, nodes push the data
items to bind the replicas to a specific grid. However, if the
respective grid contains no nodes, it cannot push the data
items.

These protocols except for [11], [12] basically assume that
each node requests one data item with one query; however,
a rank-based query, such as a top-k query, retrieves several
data items with one query. As our proposed protocol aims at
acquiring k data items through small number of nodes that are
accessed, without flooding the entire network with queries, it
is more difficult to effectively replicate data items, in order to
reduce the cost.

B. Top-k query processing

Numerous methods of top-k processing in a variety of
networks have been proposed.

A host of top-k query strategies have been proposed with
respect to fixed P2P networks and environments that data
items are horizontally distributed. In [15], the authors proposed
a method for filtering out unnecessary data items by using
skylines. However, these strategies consider neither packet
collision nor movement of nodes, and thus cannot be directly
adopted to MANETs. In WSNs, where data are sent by multi-
hop relays to the sink, numerous strategies have been proposed
to minimize both the communication cost of data transmission
and battery consumption. In [16], the authors proposed a
method which constructs a top-k filter by utilizing a dominant
graph which was discussed in [17] as a data structure for
efficient top-k query processing in centralized databases.

A few works such as [18]–[20] are extant studies that
address the issue of top-k query processing in MANETs. The
method proposed in [18] assumed an economic scheme (e.g.,
virtual currency) with a fundamentally different assumption
from that of our study. In the methods proposed in [19], [20],
the query-issuer floods a query message into the network, and
receives in reply only data items with high scores, the goal
being to minimize unnecessary data item replies. Since these
methods do not consider data replication, they employ a simple
flooding and have difficulty in guaranteeing the acquisition of
perfectly accurate query results due to packet losses. These
top-k query processing protocols in MANETs do not become
competitors to our work because they need to flood query
messages into the network or send query message to far nodes,
which definitely involve a large amount of overhead.

III. PRELIMINARIES

Table I summarizes the symbols used in the paper.



A. System model

The system environment is assumed to be a MANET in
which mobile nodes retrieve k data items with the highest
scores (retained by themselves and other mobile nodes) using
a top-k query. The query-issuer designates the number of
requested data items k and a query condition, and the scores
of data items can be calculated from a query condition. k is
selected from K different values ki (i = 1, · · · ,K) with a
probability of kqi. For simplicity, all nodes designate ki with
the same probability (i.e., use a given same access model). We
assume that the query condition includes a kind of data (e.g.,
victim information) and its attribute (e.g., injury level). The
query condition actually has no restriction since the proposed
method is independent of it. In this paper, we focus on only
one pair of query condition and scoring function, i.e., all
query-issuers issue a specific type of queries. All mobile nodes
have opportunities to send top-k queries, i.e., to become query-
issuers when they want.

We assign a unique data identifier to each data item in the
system. The set of all data items in the system is denoted by
d = {d1, d2, · · · , dD}, where D is the total number of data
items and di(1 ≤ i ≤ D) is a data identifier. We define the
subscript of d as the score rank (i.e., d1 has the highest score
and dk has the k-th highest score). Each data item is initially
retained by a specific node, and all data items are assumed to
be the same size and not to be updated for simplicity.

We assign a unique node identifier to each mobile node in
the system. The set of all nodes in the system is denoted by
m = {m1,m2, · · · ,mM}, where M is the total number of
nodes and mi(1 ≤ i ≤ M) is a node identifier. Each mobile
node moves freely, however, no nodes leave from the network
and no additional nodes join. We assume network partitioning
does not occur. Each node can allocate ρ data items as replicas.
For simplicity, ρ is same for all nodes. Every mobile node
has a communication device with communication range R,
and recognizes its own location by using a positioning system
such as GPS. We do not care about differences in devices
(e.g., smart phone and tablet), but we assume that all nodes
hold the same type of device. Moreover, while we assume for
simplicity that mobile nodes issue only one specific type of
query, mobile nodes use only a small portion of their storage
for replication (i.e., ρ is very small).

B. Problem formulations

Since problems of top-k query processing, replication, and
MANETs are intricately intertwined, we analyze the problems
in this subsection.

1) Problems for top-k query processing in MANETs: The
query-issuer transmits a query message with the given query
condition and k over the entire network, in order to acquire k
data items with the highest scores.

Definition 1: Given the set of data d, the set of mobile nodes
m, the number of data items k, and a query condition, a top-
k query problem is to acquire k data items with the highest
scores (top-k result), with the least overhead and delay.

TABLE I: Symbols

Symbol Meaning
k Number of requested data items
ki K different values of k (i = 1, ...,K)
kqi Probability that ki is designated
kmax The maximum k, i.e., max1≤i≤Kki
M Number of nodes
mi Identifier of node (i = 1, ...,M )
D Number of data items
di Identifier of data (i = 1, ..., D)

i means ranks of data items
ρ Number of replicas which a node can allocate
R Communication range
ri Replication ratio for di

In top-k queries, the query-issuer does not designate the data
identifier, so it cannot judge whether the received data items
are perfectly accurate or not even if it receives k data items.
More specifically, because of packet losses, some data items
within the k-th rank may be missing and others outside the
rank can be included in the result. If each node knows the data
identifier of the top-k result, it guarantees the exact answer and
also effectively allocate replicas. Thus, in our approach, first
a node collects the top-k result and distributes information on
the top-k result to all nodes in the MANET, and each node
determines replicas based on the information.

Our goal is to develop efficient algorithms for top-k query
processing in MANETs. We consider several performance
measures in designing our algorithms: (1) accuracy of query
result (higher is better), (2) communication overhead (smaller
is better), and (3) delay to acquire the top-k result after issuing
a query (smaller is better). (1) is the most important measure
because if (1) is very low, small (2) and (3) have no meaning,
so a better goal is to keep perfect (1) and optimize (2) and (3)
as much as possible. Moreover, (2) and (3) have a trade-off
and should be considered together. To achieve both small (2)
and (3), we try to reduce the number of nodes that must be
accessed in order to acquire the top-k result. Because, if the
number of nodes that must be accessed is small, the query-
issuer can acquire the top-k result from only nearby mobile
nodes. Therefore, in this paper, we try to determine the optimal
replica allocation to reduce An(kq), the average number of
nodes that must be accessed in order to acquire the top-k result
over the entire system. An(kq) is calculated based on the
following equation:

An(kq) =

K∑
i=1

kqi ·An(ki) (1)

where An(ki) is the average number of nodes that must be
accessed when the query-issuer designates ki.

2) Replication problems for top-k queries: Replication
strategies for single data item access are not effective for top-k
queries. This is because the access ratio for data items in a
top-k query is strongly biased (e.g., d1 is always accessed).



For example, Square root replication [9] has been proposed as
possible means of determining the optimal number of replicas
for single data item access in unstructured P2P networks.
Square root replication establishes the optimal replication ratio
for di based on the following equation:

ri =

√
qi∑kmax

j=1

√
qj

and l ≤ ri ≤ u (2)

where qi is the access rate for di, kmax is the maximum k, and
l (≥ 1

M ·ρ ) and u (≤ 1
M ) denote the minimum and maximum

ri (every data item must be replicated by at least one node,
and every node must not allocate more than one replica of the
same data item).

In top-k queries, data items with higher scores are more
frequently accessed than those with lower scores. Therefore,
the replication ratio for di is higher than that for di+1.

ri ≥ ri+1. (3)

However, if we use a simple strategy which the replication
ratio is determined based only on the access rate, the data items
with high ranks are allocated too much, resulting in a lack of
diversity of replicas. In that case, if large k is specified and
the query-issuer needs to acquire data items with low scores,
both overhead and delay may increase. Moreover, a replication
strategy for single data item access does not take into account
the fact that in top-k queries, some data items are dependently
accessed, i.e., data items with similar ranks are often accessed
by the same query.

3) Replication problems for MANETs: In MANETs, the
overhead involved in query processing is significantly lessened
when the necessary data items are replicated near the query-
issuer. Therefore, location-based replication has been proposed
in MANETs and WSNs. Here, the overhead required for query
processing is calculated based on the following equation:

cost = Σx∈mΣK
i=1kqiΣ

ki
j=1dist(x, dj) (4)

where dist(x, dj) denotes the distance (basically, the Eu-
clidean distance) between the query-issuer (x) and the node
that retains a replica of dj . Optimal replication achieves the
minimum cost, but it is known to be an NP-hard problem.
Moreover, nodes move freely in MANETs, and thus the
optimal replication changes dynamically. In addition, since the
number of neighboring nodes changes dynamically, the search
area for acquiring necessary data items cannot be known in
advance. It may be possible to reallocate replicas every time
mobile nodes move, but it involves significant overhead instead
of query processing. Therefore, a strategy is needed which
involves no maintenance overhead even if nodes move, and it
determines the relevant search area on the fly. Here, it should
be noted that perfect optimal replication is impossible in
MANETs unless all nodes know all nodes’ mobility patterns,
query timings and the network topology.

IV. PROPOSED METHODS

In this section, we describe the proposed replica allocation
strategy, the initial collection and distribution methods, and

the top-k query processing method.

A. FReT: Replica allocation strategy

Replica combination. In top-k queries, data items with
similar ranks are accessed together with high probability for
a given k. Therefore, each node allocates ρ replicas with
consecutive ranks (i.e., d1 through dρ, dρ+1 through d2·ρ,
· · · , and d⌈ kmax

ρ ⌉·ρ−ρ+1 through dkmax
). We call a set of ρ

replicas with consecutive ranks a replica combination. The
number of replica combinations is ⌈kmax

ρ ⌉, and each data item
is replicated based on the replica combination ratio that is
defined as rci (e.g., rc1 is the replication ratio for d1 to dρ).
In FReT, the replica combination ratio is calculated in order
to achieve the efficient allocation of replicas.

Replication ratio. The query-issuer can acquire the top-
k result from a small number of nodes if the efficient replica
combination ratio is established. The number of nodes that are
accessed depends on the number of neighbors for each node
and a hop count from a given node. When the hop count and/or
the number of neighbors are large, the number of nodes that
are accessed increases. Given a hop count hop, we calculate
the expected number of nodes that are accessed nh based on
the following equation:

nh = 1 + navg ×
hop∑
j=0

j (5)

where navg denotes the average number of neighbors for all
nodes (navg is estimated after an initial collection described
later). In this equation, we assume that nodes uniformly exist,
and all nodes have the same number of neighbors (navg).
Thus, nh uniformly increases as hop increases. If the number
of neighbors is extremely large, this estimation is not very
precise, but we do not assume that the number of neighbors
is not much large.

Next, we define P (ki, nh) as the probability that the top-k
result is acquired by searching nh nodes:

P (ki, nh) = 1− (rc1 + · · ·+ rc⌈ ki
ρ ⌉)

+(rc1 + rc2 + · · ·+ rc⌈ ki
ρ ⌉−1

+ rc⌈ ki
ρ ⌉)

+ · · ·
+(−1)⌈

ki
ρ ⌉ · rc1 + · · ·+ rc⌈ ki

ρ ⌉ (6)

where x denotes (1 − x)nh . This equation calculates the
probability of a complementary event that a given node cannot
access replica combinations: rc1 to rc⌈ ki

ρ ⌉ based on Inclusion-

exclusion principle. If nh is less than ⌈ki

ρ ⌉, P (ki, nh) becomes
0. This is because we need to access at least ⌈ki

ρ ⌉ nodes to
obtain ki data items. P (ki, nh) increases as nh (i.e., hop)
increases because the probability decreases that the node
cannot access necessary replicas. Of course, a smaller nh that
achieves a larger P (ki, nh) is better. Thus, the optimal hop
is determined to achieve the smallest nh

P (ki,nh)
. In addition,

P (ki, nh) increases when data items d1 through dki are



Algorithm 1 FReT algorithm
Input: ρ, ann, kq and δ
Output: rc
1: rcnum = ⌈ kmax

ρ
⌉

2: rci =
1.0

rcnum
(i = 1, · · · , rcnum)

3: while not all patterns of rc are done do
4: for i = 1, · · · ,K do
5: for hop = 1, · · · do
6: nhi

= ann ·
∑hop

j=1 j

7: An(ki)hop =
nhi

P (ki,nhi
)

8: if hop ̸= 1 and An(ki)hop ≥ An(ki)hop−1 then
9: An(ki) = An(ki)hop−1 and break

10: end if
11: end for
12: end for
13: An(kq) =

∑K
i=1 kqi ·An(ki)

14: if minAn > An(kq) then
15: minAn = An(kq), and result← rc
16: end if
17: Calculate next rc based on δ
18: end while

frequently replicated (i.e., rc1 to rc⌈ ki
ρ ⌉). However, if we pri-

oritize only small k, the diversity of replicas decreases because
rc with small subscript significantly increases. Therefore, we
should calculate nh for every ki, nhi

, to totally achieve a small
number of nodes that must be accessed in the entire MANET.
For this aim, we calculate An(kq) based on the following
equation:

An(kq) =

K∑
i=1

(kqi ·
nhi

P (ki, nhi)
). (7)

If An(kq) is minimized, the query-issuer can acquire neces-
sary data items by searching a small number of nodes with
high probability. Therefore, in FReT, the replica combination
ratio is established so as to achieve minimum An(kq).

Algorithm 1 shows pseudo-code to establish An(kq). In
this algorithm, δ denotes a parameter value which shreds rc
evenly.2 A smaller hop value which achieves minimum An(ki)
for each i is calculated for a given rc, and then An(kq) is
calculated by summing all An(ki) (lines 4 to 13). We try to
calculate all patterns of rc (recall that rci ≥ rci+1) (line 17).
To reduce the computation cost, the rci with a same access
ratio are calculated at once. Finally, after all patterns of rc are
checked, rc with minimum An(kq) is returned.

FReT is a high robust replication strategy because the
replication ratio does not sensitively change unless the net-
work topology significantly changes. Our algorithm establishes
the replication ratios only based on the average number of
neighbors for all nodes and access rates, which are relatively
constant. Since locations of nodes and the network topology
frequently change in MANETs, we do not use locations and
topological information of nodes for our replication strategy.
Thus, our replication strategy achieves high robustness for
moving nodes.

2A smaller δ can calculate more precise replica combination ratio, but
increases the computation cost. We can control δ based on a computational
power of mobile nodes.

B. Initial collection and distribution

To optimally allocate replicas, each node should know
the network information in the entire network and the data
identifiers of the top-k result. Therefore, the node which is the
first query-issuer, mc, becomes a coordinator, and transmits
an initial message to acquire the top-k result and the node
positions. To reduce the overhead for initial collection as
possible, we employ an existing protocol such as a top-k query
processing method proposed in [21] and a location-based
flooding method proposed in [22].3 After mc completes this
process, it knows the top-k result and calculates the average
number of their neighboring nodes. To calculate the number of
neighboring nodes, mc simply compares the distance between
all pairs of two node, and if the distance is within R, the two
nodes are neighbor nodes each other. Then, mc disseminates
the top-k result and the average number of their neighboring
nodes by an existing flooding technique. Receivers store the
data identifiers and scores of kmax data items with the highest
scores (or top-k result) and the average number of their
neighboring nodes. Then, each node calculates the replica
combination ratio based on FReT, and allocates replicas. Here,
receivers are aware of kmax data items with the highest scores,
but since their storage has a limit, they store only the data
identifiers and scores of data items instead of whole data items,
except for their allocated replicas.

C. Top-k query processing

In this subsection, we describe two top-k query processing
methods; the expanding ring and bundling methods. In both
methods, the query-issuer initially sends a first query, and
then repeatedly sends a reiterate query until the top-k result
is acquired. The difference between the two methods lies in
the means of setting the TTL.

The processing of the first query and that of the reiterate
query are shown in Algorithms 2 and 3. The first query
message, FQ, includes the identifier of the query-issuer,
the identifier of the query, a query condition, k, the list of
replicas retained by the query-issuer (listqi). The reiterate
query message, RQ, on the other hand, includes the identifier
of the query-issuer, the identifier of the query, the identifiers of
the demanded data items, the identifier of the sender node, the
position of the sender node, and the TTL. Both reply messages
include the identifier of the query-issuer, the identifier of the
query, the identifier of the sender node, the identifier of the
sender’s parent, and the list of reply data items (rd). In both
algorithms, mq and mr denote the query-issuer and a node that
receives a query message, respectively. Each node overhears
these messages in order to reduce the number of reply data
items as much as possible (lines 16–18 in Algorithm 2, and
lines 31–33 in Algorithm 3).

There are three main differences between the first query and
the reiterate query. First, the former designates k and a query
condition, but the latter designates demanded data items. This

3We do not restrict exiting methods which the coordinator use, but methods
without a special assumption and use of previous knowledges are preferable.



Algorithm 2 First query processing
Input: k and a query condition
Output: k data items with the highest scores
1: if Mq has k data items with the highest scores as its replicas then
2: Query is over
3: else
4: Query issuer mq broadcasts FQ
5: end if
6: if Node mr receives FQ then
7: Stores the information on FQ
8: Sets a reply timer as a random value
9: end if

10: if mr expires its reply timer then
11: for Replicas, di held by mr that are not included listqi and are not

overheard do
12: rd ← rd ∪ di
13: end for
14: Sends a reply message to the query-issuer
15: end if
16: if mr overhears a reply message then
17: Stores rd.
18: end if
19: if mq acquires the top-k result then
20: Query is over
21: else if mq waits a maximum reply timer then
22: Stores the number of nodes replied for the bundling method
23: Go to Algorithm 3
24: end if

is because the combined size of k and the query condition is
less than that of all the identifiers of demanded data items, but
the query-issuer cannot designate only demanded data items in
the reiterate query by designating k and the query condition.
In the first query, duplicate reply data items may be sent in
reply messages from nodes though the query-issuer has those
replicas. Thus, we use listqi to reduce the number of such
duplicate reply data items. Second, the latter uses location-
based flooding, but the former does not. This is because the
reiterate query in which the TTL is large has more chance of
employing location-based flooding, but the first query in which
the TTL is 1 does not. Thus, in the case of the first query, the
location information unnecessarily increases the message size.
Finally, the latter sets the TTL to expand the search range, but
the former does not set (i.e., the TTL is always 1). It has two
reasons; to acquire the top-k result from nearby nodes, and
to know the current number of neighboring nodes as soon as
possible.

Expanding ring method. In the expanding ring method
in unstructured P2P networks proposed in [23], the TTL
gradually increases in order to minimize the number of nodes
that must be accessed. In our version of method, the TTL of
every first query is set as 1, and the TTL of the reiterate query
is set as the previous TTL plus 1. The simple modification
makes it possible to minimize the number of reply data items.
However, when the number of neighbors is small, the number
of reiterate queries increases, and thus, the delay may increase.

Fig. 1(a) shows an image of increasing TTL in the expand-
ing ring method. The circles in this figure, which denote the
search area, gradually expand.

Bundling method. In the bundling method, the query-issuer
sets the TTL based on the current number of neighboring

Algorithm 3 Reiterate query processing
Input: Identifiers of demanded data items
Output: Demanded data items
1: mq broadcasts RQ
2: if Node, mr receives RQ then
3: if Receives first then
4: Stores the information on RQ
5: Decreases TTL by 1
6: if Has demanded data items then
7: rd← the demanded data items retained by mr

8: Sends a reply message to its parent
9: Demanded data items ← demanded data items - rd

10: end if
11: if TTL > 0 and demanded data items ̸= ϕ then
12: Updates RQ
13: Sets a query timer as a random value
14: end if
15: end if
16: Updates neighbor nodes
17: end if
18: if mr expires its query timer then
19: Calculates communication range of sender nodes based on location-

based flooding [23]
20: if Communication range of mr is not covered then
21: Broadcasts RQ
22: end if
23: end if
24: if mr receives a reply message then
25: for Reply data items rdi are not sent to parent node, and are not

overheard do
26: rd ← rd ∪ rdi
27: end for
28: if rd ̸= ϕ then
29: Sends a reply message to its parent
30: end if
31: else if mr overhears a reply message then
32: Stores rd
33: end if
34: if mq acquires the top-k result then
35: Query is over
36: else if mq expires a timer determined based on TTL then
37: Updates RQ
38: mq broadcasts RQ again
39: end if

nodes cnn. However, since the query-issuer does not know
its cnn in advance, the TTL of the first query is set as 1.
After the first query, since the query-issuer now knows its
cnn, it increases the TTL of the first reiterate query at once.
The TTL is determined to fulfill the following equation when
the query-issuer designates ki as k:

cnn×
TTL∑
j=1

j >
nhi

P (ki, nhi
)

(8)

where nhi
and P (ki, nhi

) are respectively the expected num-
ber of nodes that must be accessed in order to acquire the
data items with ki highest scores and the probability that
the top-k result is acquired by searching nhi

nodes in Eq.
(7). This equation calculates the TTL (≥ 2) that the query-
issuer acquires the top-k result with high probability and
small number of nodes that are accessed, based on the current
number of neighbors. If the query-issuer cannot acquire the
top-k result using this TTL, then it increases TTL by 1. This
method can increase the TTL at once, potentially lessening
the delay. However, due to an excessive increase of TTL, the



(a) Expanding ring method (b) Bundling method
Fig. 1: Differences in TTL between the expanding ring and
bundling methods

number of reply data items is basically greater than in the
expanding ring method.

Fig. 1(b) shows an image of increasing TTL in the bundling
method. The TTL of the first reiterate query becomes large at
once.

V. PERFORMANCE EVALUATION

In this section, we summarize the results of simulation
experiments evaluating performance of our method. For the
experiments, we used the network simulator, QualNet5.2,
which takes into account the effect of physical layer (i.e.,
packet losses and delays occur due to radio interference).4

A. Simulation model

Mobile nodes are present in an area of 1000 meters × 1000
meters. The initial position of each node is determined ran-
domly. The number of mobile nodes in the entire network is M
(300-800, default setting is 500). The nodes move according
to the random-walk model, with a random velocity range of
0.5 to v (0-5, default setting is 1) meters/second (when v is 0,
nodes are stationary). Each mobile node transmits messages
(and data items) using an IEEE 802.11b device, with data
transmission rate of 11 Mbps. The transmission power of each
mobile node is set such that the radio communication range
R is roughly 100 meters.

Each mobile node retains 100 data items. The size of a data
item is 128 bytes. The score of each data item is randomly
determined within a range of 0 to 100. Each mobile node can
replicate 5 (ρ = 5) data items in its storage.

Every mobile node issues a top-k query every 30 seconds,
where k (kmax = 100 and K = 4) is set as 25, 50, 75 and
100 based on the two access models (uniform and Zipf-like).
In the uniform model, each k is designated with the same
probability (25%), and in the Zipf-like model, 25, 50, 75, and
100 are respectively designated with the probabilities of 80%,
10%, 5%, and 5%.

In this simulation, a node which is randomly selected
performs initial collection and distribution at the start of sim-
ulation. After 100 seconds, we evaluate the following criteria

4Scalable Networks: makers of QualNet and EXata, the only multi-core
enabled network simulation and emulation software. [Online]. Available:
http://www.scalable-networks.com/.

TABLE II: Message size

Message Value [bytes]
First query 36
Reiterate query 36+4 · i1
LACMA’s query 40
Reply (all methods) 24+128 · i2
Push message (LACMA’s maintenance) 32+128 · i3

over 300 queries (i.e., simulation time is 1000 (100+30×300)
seconds).

• Accuracy of query result: the average ratio of (the number
of data items acquired by the query-issuer, which are
included in the top-k result) to (the number of requested
data items, k).

• Delay [second]: the average elapsed time after the query-
issuer issues a top-k query until it acquires the result.

• Query overhead [Kbytes]: the average volume of query
and reply messages (i.e., total volume during the simula-
tion divided by 300). The size of each message is shown
in Table II. In this table, i1, i2 and i3 respectively denote
the number of the demanded data items, the number of
data items included in the reply, and the number of data
items that a node pushes.

B. Baselines

We implemented location-based replication methods for
comparison with our proposed methods: the expanding ring
and bundling methods (graph legends are ER FReT and
B FReT, respectively). We set δ to 0.0001.

1) LACMA (graph legend is LACMA): Data items are
replicated in a specific grid (replica combination is
also introduced). In this simulation, the grid size is
determined based on the access frequency of k and the
number of nodes. In the query processing, the query-
issuer floods a message into its own grid to acquire
k data items with the highest scores. However, when
the query-issuer cannot acquire the top-k result by a
pre-determined time limit that is determined based on
the grid size, it gives up to acquire the top-k result. In
LACMA, the replicas are maintained to bind a specific
grid. When a node leaves its own grid, it pushes the data
items which should be bound to the grid, and deletes the
data items from its storage (graph legend “LACMA M”
represents the average maintenance overhead per query
interval (30 seconds)). Nodes receiving the data items
replicate the data items if they have available storage.

2) Reiterate LACMA (graph legend is ReLACMA): After
acquiring the result by using LACMA, the query-issuer
repeatedly sends a reiterate query in the same way as
our methods until the top-k result is acquired. The TTL
of the first reiterate query is ⌈ grid width·

√
2

R ⌉, and then
it increases by 1.

In addition, we implemented two replication strategies for
comparison with FReT.



1) Uniform replication: All data items with kmax highest
scores are replicated with the same probability.

2) Square root replication: Data items are replicated based
on the replication ratio proposed in [9].

In all replication strategies including FReT, we employ the
proposed methods for query processing (graph legends for
uniform replication and square root replication are ER uni,
B uni, ER SQRT, and B SQRT, respectively).

C. Simulation results

1) Top-k query processing: First, we examine the perfor-
mance of the proposed top-k query processing methods.

Impact of number of nodes. Fig. 2 shows the simulation
result by varying the number of nodes M in the uniform access
model. From Fig. 2(a), we can see that the proposed top-k
query processing methods achieve perfect accuracy of query
result. On the other hand, LACMA without reiterate query
cannot achieve perfect accuracy of query result due to the
movement of nodes, the inhomogeneous density of nodes, and
packet losses.

From Fig. 2(b), the bundling method which we proposed
achieves smallest delay among all methods. This is because
the bundling method expands the search area to the area that
contains the top-k result with high probability at once. The
expanding ring method also achieves small delay because the
search area is small though the number of transmitted queries
is large. When the number of nodes is large, the delay in
the expanding ring method is similar to that in the bundling
method. This is because as the number of nodes increases,
the probability that the top-k result is acquired within 1
hop increases. The delay in LACMA is larger than that in
the proposed methods, because, since the query-issuer often
cannot acquire the top-k result, it has to wait for the pre-
determined time limit.

From Fig. 2(c), the expanding ring method achieves the
smallest query overhead because of acquiring the top-k result
from the minimum number of nearby nodes. The bundling
method keeps similar overhead to LACMA though it achieves
the perfect accuracy of query result. The query overhead of
reiterate LACMA is significantly large, because in LACMA,
nodes delete their own replicas when they move out from their
grids, and thus the search range becomes larger. Moreover, in
LACMA, the maintenance cost increases as the number of
nodes increases.

Impact of velocity. Fig. 3 shows the simulation result
by varying the maximum velocity v in the uniform access
model. In the graphs, we show result of ReLACMA where
the maximum velocity is equal to or less than 2 because
Reiterate LACMA does not work well when the maximum
velocity is larger than 2. From Fig. 3(a), we can see that the
proposed methods achieve perfect accuracy of query result
even if the maximum velocity increases. On the other hand, as
the velocity increases, the accuracy of query result decreases
in LACMA because many nodes often move out from their
grid.

From Fig. 3(b), the proposed methods achieve better perfor-
mance than LACMA. Reiterate LACMA experiences signifi-
cant long delay to acquire the top-k result because the search
range and the number of reiterate queries become significantly
large.

From Fig. 3(c), we can see that the query overhead in the
proposed methods is insensitive to the movement of nodes.
In LACMA, when nodes are stationary (v = 0), the query
overhead in LACMA and the expanding ring method with
FReT are the smallest. Replicas in LACMA are allocated
uniformly (i.e., geographically optimal allocation), while the
search range is restricted to its own grid. Thus, even if nearby
nodes that belong to a different grid have necessary data items,
these nodes do not send a reply, which result in less volume of
replies than other methods. On the other hand, the expanding
ring method can acquire the top-k result from the minimum
number of nearby nodes. As the result, the query overhead in
LACMA and that in the expanding ring method with FReT
become similar though their approach are different. If nodes
move, the locations of allocated replicas change, and thus,
the query overhead increases. When the velocity is large, the
maintenance overhead becomes larger than the overhead for
query processing. This fact shows that LACMA is less robust
against the movement of nodes in terms of the accuracy of
query result and the query overhead.

Impact of access model (Zipf-like). Fig. 4 shows the
simulation result by varying the number of nodes M in the
Zipf-like access model. From Fig. 4(a), the proposed methods
achieve the perfect accuracy of query result even if the access
model follows the Zipf-like access model. On the other hand,
in LACMA, the accuracy of query result is lower than that in
the uniform access model. This is because the grid for data
items with 25th highest scores becomes very small, and thus,
nodes frequently move out from their grids.

From Fig. 4(b), the delays in the expanding ring and the
bundling methods show more similar performance than that
in the uniform access model. This is because, since small k is
frequently designated in the Zipf-like access model, the query-
issuer can likely acquire the top-k result only from very nearby
nodes. In ReLACMA, the delay increases when the number of
nodes is large. This is because the grid size becomes smaller
as the number of nodes increases, and thus, nodes frequently
move out from their grids.

From Fig. 4(c), the query overheads in the Zipf-like access
model is smaller than that in the uniform access model because
small k is frequently designated. In LACMA, the maintenance
overhead is larger than that in the uniform access model for
the same reason the accuracy decreases. This means LACMA
does not work well in a strongly-biased access model.

2) Replica allocation strategy: Next, we examine the per-
formance of replica allocation strategies. Figs. 5 and 6 show
the simulation result by varying the number of nodes M in
the uniform access model and the Zipf-like access model,
respectively.

From Fig. 5(a), the bundling method with FReT achieves
the smallest delay in all methods. The expanding ring method
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Fig. 5: Difference among replica allocation strategies in uni-
form access model

with FReT also achieves the small delay. This shows FReT
achieves an appropriate diversity of replicas. On the other
hand, the square root replication works worse than the uniform
replication. This is because the square root replication allocates
too much replicas of high-ranked data items, and thus, the
number of reiterate queries increases. From Fig. 5(b), the
expanding ring method with FReT achieves the smallest query
overhead in all methods, and the bundling method with FReT
achieves smaller query overhead than the bundling methods
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Fig. 6: Difference among replica allocation strategies in Zipf-
like model

with other replication strategies. The uniform and squire root
replication strategies involve similar query overhead, which
shows the average hop count from k data items with the
highest scores to the query-issuer is almost similar in both
strategies in spite of different replication ratios for data items.

From Fig. 6(a), FReT achieves the smallest delay. The
uniform replication poorly works in the Zipf-like access model
because data items with low scores are unnecessarily repli-
cated, while data items with high scores should be replicated



more. From Fig. 6(b), the expanding ring method with FReT
achieves the smallest query overhead in all methods, and
the bundling method with FReT basically follows it. This is
because FReT takes into account the number of neighbors for
data replication, and thus, the query-issuer can acquire the top-
k result with small hop count. On the other hand, the square
root replication unnecessarily replicates data items with high
scores, and thus the query-issuer receives many duplicate data
items.

3) Summary: From the above results, we can see that the
proposed methods achieve perfect accuracy of query result
with small overhead and delay in all situations. In addition,
FReT achieves higher performance than the location-based
replication strategy in MANETs and other replication strate-
gies.

VI. CONCLUSION

In this paper, we proposed a top-k query processing method
with replication in MANETs. The proposed replication strat-
egy for top-k query, FReT, achieves good replica allocation to
acquire the top-k result from a small number of nodes. FReT
involves no maintenance cost due to nodes’ movement. In
the proposed top-k query processing method, the query-issuer
repeatedly sends a query message until it acquires the perfect
top-k result, by increasing the TTL that defines the search
area by hop count. The increase in the TTL is based on two
complementary approaches: the expanding ring and bundling
methods. The expanding ring method can achieve the smallest
number of nodes that need to be accessed for acquiring the
top-k result, while the bundling method achieves small delay.
Both methods can guarantee the exact accuracy of the query
result. We evaluated these methods through simulations which
took into account the effect of the physical layer such as radio
interference. The simulation results show that FReT achieves
better performance than existing replication strategies. The
results also show that the expanding ring method achieves
small overhead, while the bundling method achieves small
delay.

In this paper, we simplified some assumptions, e.g., no
data update, specific query condition, and all nodes use same
access model and hold same device. These assumptions are not
always true in a real environment. Thus, we plan to extend our
methods to work without these assumptions.
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