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Abstract—The urban condition is monitored by a wide variety
of sensors with several attributes such as temperature and traffic
volume. It is expected to discover the correlated attributes to
accurately analyze and understand the urban condition. Several
mining techniques for spatio-temporal data have been proposed
for discovering the sets of sensors that are spatially close to each
other and temporally correlated in their measurements. However,
they cannot discover correlated attributes efficiently because
their targets are correlated sensors with a single attribute. In
this paper, we introduce a problem of discovering correlations
among multiple attributes, which we call correlated attribute
pattern (CAP) mining. Although the existing spatio-temporal data
mining methods can be extended to discover CAPs, they are
inefficient because they extract unnecessary correlated sensors
that do not have CAPs. Therefore, we propose a CAP mining
method MISCELA to efficiently discover CAPs. In MISCELA, we
develop a new tree structure called CAP search tree, by which
we can effectively prune the unnecessary patterns for the CAP
mining. Our experiments using real sensor datasets show that
the response time of MISCELA is up to 79 % faster compared
to the state-of-the-art.

Index Terms—Spatio-temporal data mining, Smart city, Co-
evolving pattern

I. INTRODUCTION

Many cities have installed a wide variety of sensors to
continuously and cooperatively monitor urban conditions, such
as the distribution of air pollution, the transition of the traffic
volume, and the change of the temperature. Municipalities
analyze the urban conditions and make a decision for the
urban planning by using such sensor data. For example,
Santander, Spain monitors the traffic volumes within the city
and informs people of the real-time traffic information [1]. The
accumulated traffic data are used to several urban management
such as the traffic prediction, the road extension, and the
traffic signal control. In these services, it is useful to discover
the sets of roads which are spatially close and whose traffic
volumes increase or decrease during the same periods (i.e., co-
evolve). The problem is called the spatial co-evolving pattern
mining (for short, SCP mining), which discovers sensors that
are spatially close to each other and temporally co-evolving
in their measurements. Since SCP mining is useful for many
applications such as the air pollution analysis in an urban area,
several SCP mining methods have been proposed [2], [3].

Although the SCP mining discovers meaningful patterns
for analyzing the urban environments, it assumes sensors
with a single attribute. Many cities typically monitor multiple
attributes such as the temperature and the traffic volume to

���������
��	�
��	�������

!"

!#!$

(a) Sensor location
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(b) Correlation

Fig. 1: The correlation between traffic volume and temperature
in Santander

analyze the urban environments from diversified viewpoints.
To accurately analyze and understand the urban environment, it
is expected to discover correlated attributes which are spatially
close to each other and temporally co-evolving. However, the
SCP mining does not discover correlated attributes because its
target is a single attribute.

Example : Figure 1 shows an example of the SCP mining
in Santander. There are two traffic sensors s1 and s2, and a
temperature sensor s3. These sensors are spatially close to each
other, and the measurements of them co-evolve frequently. The
SCP mining can discover a set of s1 and s2 as correlated
sensors. However, it does not discover that traffic volume and
temperature are correlated. Municipalities can more accurately
understand the traffic behavior by using the data of both the
traffic volume and the temperature in the area.

The correlated attributes are computed from multiple at-
tributes and thus provide more diversified knowledge than the
patterns from the SCP mining. City managers can obtain more
helpful and interesting knowledge in an urban environment
from the correlated attributes. Thus, it would contribute to
advanced urban management.

In this paper, we introduce a problem of discovering correla-
tions among different attributes, which is called the correlated
attribute pattern (CAP) mining. A CAP is a set of multiple
attributes measured by a set of sensors which are close to each
other and whose measurements co-evolve. Although we can
extend the existing SCP mining methods to discover CAPs,
they are inefficient because they extract unnecessary correlated
sensors that do not have CAPs. Therefore, we propose a novel
CAP mining method called MISCELA which can efficiently
discover CAPs in a set of sensors whose measurements contain
multiple attributes. We develop a novel data structure called
the CAP search tree to facilitate efficient CAP mining. We



can effectively prune the unnecessary patterns for the CAP
mining by using the CAP search tree. We conduct experiments
with three real sensor datasets in Santander and China. Our
experiments show that MISCELA reduces the response time
by up to 79% compared to that of the state-of-the-art SCP
mining method [2]. In the experiments, the CAP mining
discovers meaningful CAPs such as Figure 1.

The main contributions of this paper are as follows.
• We introduce a new problem, CAP mining, that aims

to discover correlations among different attributes. It
contributes to the advanced urban management.

• We propose MISCELA that efficiently discovers CAPs.
MISCELA accelerates the CAP mining with a novel data
structure called the CAP search tree, which conceptually
organizes all CAPs based on the spatial constraint and
combinations of attributes. We can efficiently discover
all CAPs by reducing unnecessary candidates generation
by the CAP search tree.

• We conduct experiments with three real sensor datasets.
The results demonstrate that MISCELA more efficiently
discovers CAPs than the state-of-the-art.

The rest of paper is organized as follows. We formulate the
CAP mining in Section II and propose the novel CAP mining
method MISCELA in Section III. We conduct the CAP mining
experiments in Section IV. After that, we summarize the past
typical work related to our work in Section V, followed by
the conclusion in Section VI.

II. PROBLEM DESCRIPTION

Let S = {s1, s2, . . . , sn} be a sensor set in a geographical
region. Each sensor si ∈ S (1 ≤ i ≤ n) is deployed at location
li and has attribute ai ∈ A,A = {a1, a2, . . . , am}, where m
indicates the number of attributes of deployed sensors in a city.
Each attribute represents the type of data such as temperature,
traffic volume, and PM2.5. The sensor si has synchronized
measurements si[tj ] (1 ≤ j ≤ T ) over the time domain T =
〈t1, t2, . . . , tT 〉, where each tj is a timestamp.

Our goal is to discover sets of attributes which are spatially
and temporally correlated in S. In practice, the correlation
among attributes is evaluated as the correlation among sensors
which measure different attributes. The spatial correlation
among sensors is evaluated based on the spatial closeness
of sensors. Hence, we define a spatially connected set and
a spatially connected congeneric set as follows.

Definition 1 (Spatial Connected Set): Given distance thresh-
old η and subset of a sensor set G ⊆ S, G is a spatially
connected set if for any subset G′ of G, there are s ∈ G′

and s′ ∈ G\{G′} that dist(s, s′) ≤ η, where dist(s, s′) is the
geographical distance between s and s′.

Definition 2 (Spatially Connected Congeneric Set): Given
spatially connected set G ⊆ S and attribute a, if ∀s ∈ G have
the same attribute a, it is called spatially connected congeneric
set, which is denoted as Ga.

The temporal correlation among sensors is evaluated by the
number of timestamps of sensors whose measurements change

similarly. The time domain T typically includes many trivial
intervals in which the measurements have random and small
fluctuations. To obtain the meaningful correlations, we only
compare timestamps of sensors whose measurements change
similarly and significantly in T. Thus, we define change rate
and evolving timestamp.

Definition 3 (Change Rate): Given sensor si and timestamp
tj , the change rate ri[tj ] of si at the timestamp tj is

ri[tj ] =
si[tj+1]− si[tj ]

tj+1 − tj
.

Definition 4 (Evolving Timestamp): Given evolving rate ε
and attribute a, timestamps with the top-ε% (absolute) change
rate in the whole sensor data with a are the evolving times-
tamps for a. Let Θa = (θa

+, θa
−) be the evolving threshold

for a, timestamp tj is called the positive and negative evolving
timestamp if ri[tj ] ≥ θa+ and ri[tj ] ≤ θa−, respectively.

Next, we define a co-evolution of a spatially connected
congeneric set and a co-evolution among µ attributes.

Definition 5 (Co-evolution): Let Ga be a spatially connected
congeneric set for attribute a. Given evolving threshold Θ,
timestamp tj positively co-evolves in regard to Θ if ∀si ∈
Ga, ri[tj ] ≥ θ+, denote as tj

+−→ Θ. As well, timestamp tj
negatively co-evolves as for Θ if ∀si ∈ Ga, ri[tj ] ≤ θ−, which
is denoted as tj

−−→ Θ. The set of the timestamps positively or
negatively co-evolving is called the co-evolution of Ga, denote
as E(Ga) = {tj ∈ T|tj

+−→ Θ ∨ tj
−−→ Θ}.

Definition 6 (Co-evolution among µ Attributes): Let ∗i be
a symbol which represents either + or − and ∗̄i be a inverse
of ∗i. Let Ga1 , . . . ,Gaµ be µ spatially connected congeneric
sets of a1, . . . , aµ (a1 · · · aµ are different attributes each other).
Given µ evolving thresholds Θa1 , . . . ,Θaµ , if Ga1 ∪· · ·∪Gaµ
is also spatially connected set, we call the set of timestamps
C
∗1,...,∗µ
a1,...,aµ = {tj ∈ E(Ga1) ∩ · · · ∩ E(Gaµ)|(tj

∗1−→ Θa1 ∧
· · · ∧ tj

∗µ−→ Θaµ) ∨ (tj
∗̄1−→ Θa1 ∧ · · · ∧ tj

∗̄µ−→ Θaµ)} the
co-evolution among Ga1 , . . . ,Gaµ .

If a co-evolution among attributes appears frequently, we
call it the correlated attribute pattern.

Definition 7 (Correlated Attribute Pattern): Let C∗1,...,∗µa1,...,aµ be
a co-evolution among Ga1 , . . . ,Gaµ . Given minimum support
ψ, C∗1,...,∗µa1,...,aµ is a correlated attribute pattern of µ attributes
a1, . . . , aµ on Ga1 , . . . ,Gaµ if |C∗1,...,∗µa1,...,aµ | ≥ ψ.

Based on the above definitions, we define our problem CAP
mining as follows.

Problem Definition (CAP Mining): Given sensor set S over
time domain T, minimum support ψ, evolving rate ε, distance
threshold η, and the maximum number of CAP attributes µ,
the CAP mining discovers all the correlated attribute patterns
which contain two to µ attributes.

III. MISCELA
In this section, we present our CAP mining method MIS-

CELA. Firstly, we describe an outline of MISCELA. Then we



explain the detail of each component of MISCELA. After that,
we show the algorithm of MISCELA, followed by a discussion
of the time complexity.

A. Outline of MISCELA

According to the Definition 7, the attributes on the sensor
sets are a CAP if (1) the sensors are spatially connected, (2)
the number of evolving timestamps is larger than ψ, and (3)
the sensors contain two to µ attributes. We can discover all
CAPs by searching all the spatially connected sets within a
given sensor set. However, it is inefficient because there are
typically a lot of spatially connected sets which do not have
CAPs. Therefore, we only search the spatially connected sets
which have CAPs. For efficient search, furthermore, we take an
expansion-based approach. We propose a tree structure called
the CAP search tree to effectively expand a spatially connected
set. MISCELA comprises the following four steps.

1) Linear segmentation: We filter uninteresting data fluc-
tuation by applying a linear segmentation algorithm to
time series data.

2) Extracting evolving timestamps: We extract evolving
timestamps in the measurements of all sensors by using
given evolving rate ε.

3) Discovering spatially connected sets of sensors: Since
CAPs are discovered only from spatially connected sets,
we divide a given sensor set into spatially connected sets
to restrict the search space.

4) CAP search: For each spatially connected set, we search
for CAPs. We recursively conduct the CAP search with
gradually expanding a spatially connected set according
to the CAP search tree.

B. Linear Segmentation

As for the first step, we approximate the time series data
to filter uninteresting fluctuations because the time series data
often includes noises. To approximate the time series data, we
employ a simple and effective linear segmentation algorithm,
the bottom-up algorithm [4]. The bottom-up algorithm first
merges successive two measurements to approximate the T -
length time series data by T/2-length one. That is, we compute
〈(s[t1] + s[t2])/2, (s[t3] + s[t4])/2, . . . , (s[tT−1] + s[tT ])/2〉.
Then, we iteratively merge successive two measurements
that have the smallest difference between them among any
successive measurements. If the smallest difference is larger
than a given threshold, we stop the procedure. The linear
segmentation reduces unexpected effects on CAPs caused by
small fluctuations. Note that any algorithms can be used in
this step instead of the bottom-up algorithm.

C. Extracting Evolving Timestamps

To discover CAPs, we need to extract evolving timestamps.
We permit users to specify the evolving rate ε instead of
directly specifying the evolving threshold in Definition 4. The
detail of the extraction is as follows. First, we calculate the
change rate for each time series data of each attribute. Next, we

compute the change rate with the top-ε% absolute value as an
evolving threshold, which specifies the evolving timestamps.
Then, we extract both positive and negative evolving times-
tamps whose absolute change rate is larger than the evolving
thresholds.

D. Discovering Spatially Connected Sensors

As a CAP is discovered on a spatially connected set, we
divide a given sensor set into spatially connected sets so that
we restrict the search space only inside of each maximal
spatially connected set. Here, maximal means that the spatially
connected set is not contained in any larger connected set. In
MISCELA, we model the spatially connected sensor sets as
graphs. Then, we firstly introduce the concept of sensor graph,
connected sub-graph, and connected component.

Definition 8 (Sensor Graph): Given sensor set S and dis-
tance threshold η, sensor graph GS is a graph where each
vertex in GS corresponds to a sensor in S and there is an
edge between two vertices if their corresponding sensors are
located within no longer than the distance η.

Definition 9 (Connected Sub-graph): Given sensor graph
GS , let GS ′ = (V′,E′) be a sub-graph of GS . GS ′ is a
connected sub-graph if there is a path in GS ′ from u to v
for every u, v ∈ V′. Let λ be the number of vertices of GS ′,
GS ′ is called size–λ connected sub-graph.

Definition 10 (Connected Component): Given sensor graph
GS , let GS ′ = (V′,E′) be a sub-graph of GS . GS ′ is
a connected component if GS ′ is not contained any larger
connected sub-graph in GS .

To discover spatially connected sensors, we construct a
sensor graph and find connected components of the sensor
graph. For efficiently computing them, we use DBSCAN [5].
DBSCAN is one of the clustering algorithm, which groups
together points with many nearby neighbors. It has two input
parameters; distance threshold and MinPts. When we set η as
distance threshold and 2 as MinPts, DBSCAN can identify
edges between s and s′ if the distance between two sensors
is less than or equal to η. The clustering results of DBSCAN
can be considered as the connected components. DBSCAN
simultaneously constructs sensor graphs and find connected
components.

Example : Figure 2 shows an example of sensor graph. Let
the square and the circle symbols be sensors and the different
symbols mean to measure different attributes. Given sensor set
S = {s1, s2, . . . , s9} and distance threshold η, we transform
it as the sensor graph GS . There is no edge between s5 and
s6 because the distance between them is larger than η. We
identify two connected components G1 and G2 in GS .

E. CAP Search

We can naively discover all CAPs by searching all con-
nected sub-graphs of each connected component. However,
it is quite inefficient because the number of connected sub-
graphs exponentially increases as the number of sensors in-



!"

#$

#"

#%

#&

#'

#(

#)

#*

#+

!'

!,

Fig. 2: The sensor graph of the sensor set S

creases. Therefore, we gradually expand a connected sub-
graph based on the connectivity. Additionally, it is unneces-
sary to compute the intersection of evolving timestamps on
connected sub-graph which contain only a single attribute
or more than µ attributes for the CAP mining because the
connected sub-graphs do not have any CAPs. Thus, we expand
a connected sub-graph so as to make the explored connected
sub-graphs can have CAPs.

For the efficient expansion, we develop a tree structure
called the CAP search tree. We construct a CAP search tree for
every connected component. For each connected component,
the CAP search tree effectively organizes all the connected
sub-graphs which contain at most µ attributes into a tree
structure based on the spatial connectivity. Each tree node
in the CAP search tree uniquely corresponds to a connected
sub-graph of a connected component. In the CAP search
tree, we compute the intersection of evolving timestamps only
for connected sub-graphs corresponded by tree nodes. If the
number of intersections in tree nodes is larger than ψ, the
tree nodes contains CAPs. We call the computation of the
intersection CAP computation. The CAP search tree effectively
reduces the computation cost because it reduces the number
of CAP computations.

To construct the CAP search tree based on the spatial con-
nectivity, we introduce parent relation between two connected
sub-graphs.

Definition 11 (Parent): Given size–λ connected sub-graph
Y in sensor graph GS , vertex ordering ν of GS , and the max-
imum number of CAP attributes µ. Let s′ be the first possible
vertex in ν satisfying the condition such that X = Y\{s}
is a connected sub-graph containing less than or equal to µ
attributes. At this time, X = Y\{s′} is called a parent of Y.

We use the parent relation to construct a CAP search tree
of each connected component. Each tree node in the CAP
search tree has one unique parent, and the nodes containing
a single sensor are connected the root node φ. In short, all
the connected sub-graphs in the connected component form a
tree structure with the empty set φ as the root. To discover all

Fig. 3: The CAP search tree of G1 in Figure 2

CAPs, we explore all the tree node from the root to the leaves.
The construction of the entire tree structure takes large costs.
Thus, we do not construct the entire tree structure beforehand
for the efficient discovery of CAPs. Instead, we perform depth-
first construction from the root node and only visit the tree
nodes that have CAPs.

Example : Consider the connected component G1 in Fig-
ure 2. Suppose a vertex ordering ν = {s1 → s2 → s3 → s4 →
s5} and the number of maximum attributesµ = 2. Figure 3
shows the CAP search tree for the connected component G1,
Each tree node in the CAP search tree corresponds to a
connected sub-graph in G1. Any connected sub-graphs in the
tree contain two to µ attributes (except for a single sensor).
The parent of the connected sub-graph {s2, s3, s4} is the
set {s2, s3} because sensor s4 is the first possible one in
ν that ensures the remaining sensors are still connected and
it contains 2 attributes. We can discover all CAPs in G1 by
exploring all the tree nodes in the CAP search tree.

For any tree node in the CAP search tree, if a node does
not have any CAPs, no descendants of the node have CAPs.
Hence, we can safely prune the sub-tree rooted at the node by
the following theorem.

Theorem 1: Given spatially connected set G = Ga1 ∪ · · · ∪
Gaµ , where Ga1 , . . . ,Gaµ are spatially connected congeneric
sets. Let G′ be a connected sub-graph of G, G has no CAPs
if G′ has no CAPs.

Proof : Let C
∗1,...,∗µ
a1,...,aµ be a co-evolution among

Ga1 , . . . ,Gaµ . All the timestamps in C
∗1,...,∗µ
a1,...,aµ is also

contained in C
′∗1,...,∗µ
a1,...,aµ because G′ is a subset of G.

Therefore, |C∗1,...,∗µa1,...,aµ | < ψ if |C ′∗1,...,∗µa1,...,aµ | < ψ. Thus, G has
no CAPs if G′ has no CAPs. �

F. Algorithm of MISCELA

We can efficiently discover CAPs by using four steps in
MISCELA. The pseudo-code of our proposal, MISCELA,
is given in Algorithms 1 and 2. Algorithm 1 contains first,
second, and third steps. MISCELA applies the bottom-up
segmentation algorithm to the given sensor data in order to
filter uninteresting fluctuations (lines 1–3). Next, it computes
the evolving thresholds for all the attributes (line 5) and
extracts evolving timestamps (lines 6–15). Then, it identifies



Algorithm 1 MISCELA

Input: sensor set S, minimum support ψ, evolving rate ε, dis-
tance threshold η, the maximum number of CAP attributes
µ

Output: All CAPs on S
1: ForEach si ∈ S do
2: Bottom-up Linear Segmentation(si)
3: end for
4: ForEach attribute a that S contains do
5: Θa ←Evolving Threshold Estimation(Ga,ε)
6: ForEach si ∈ Ga do
7: for j = 0→ length of T do
8: if ri[tj ] ≥ θ+

a then
9: tj is a positive evolving timestamp

10: end if
11: if ri[tj ] ≤ θ−a then
12: tj is a negative evolving timestamp
13: end if
14: end for
15: end for
16: end for
17: GS ← DBSCAN(S,η,MinPts = 2)
18: ForEach G ∈ GS do
19: ForEach s ∈ G do
20: CAP Search(G,{s},ψ)
21: end for
22: end for

Algorithm 2 CAP search

Input: connected component G, connected sub-graph X ⊆ G,
minimum support ψ

Output: CAPs on X
1: Y ← the sets of sensors whose parent is X
2: ForEach Y ∈ Y do
3: Cy ← CAPs on Y with CAP Computation(Y,ψ)
4: if Cy is not empty then
5: output Cy
6: CAP search(G,Y,ψ)
7: end if
8: end for

connected components by using DBSCAN (line 17). Finally, it
conducts the CAP search starting from every size-1 connected
sub-graph (lines 18–20).

Algorithm 2 sketches the fourth step, that is the CAP search.
Given connected component X, the algorithm starts the depth-
first search from X. First, we select all connected sub-graphs
whose parent is X in the CAP search tree (line 1). Second, for
each connected sub-graph Y, the algorithm conducts the CAP
computations (i.e. the intersection of the evolving timestamps)
on Y (line 3). If Y contains CAPs, the algorithm outputs the
CAPs on Y (line 5). Then, we recursively conduct depth-first
search on Y (line 6). If Y does not contain any CAPs, we prune
all the subtree rooted at Y.

G. Time Complexity

We analyze the time complexity of MISCELA.

Theorem 2: Given the number of sensors n, the length of
time domain T , the number of connected components |GS |,
the maximum number of CAP attributes µ, the maximum
size of sensor sets in tree nodes λ, the height of CAP
search tree h, and the average degree of sensor graph d,
MISCELA incurs time complexity of O(nT + n log n +
max(|GS |hd2λ, |GS |hd2µ)).

Proof : Since MISCELA contains four steps, we describe
the time complexity of each step. Then, We describe the total
time complexity of MISCELA.

1) The first step of MISCELA is the linear segmentation.
The time complexity of this step follows the bottom-
up algorithm. Let L be the average number of final
segments, the bottom-up algorithm takes O(LT ) for n
sensors [4]. Since basically L is much smaller than T ,
the time complexity of first step is O(nT )

2) The second step of MISCELA is extracting evolving
timestamps. This involves two parts: (1) estimating
the evolving threshold for each attribute, (2) extracting
evolving timestamps for the sensors. Estimating the
evolving threshold takes O(nT ) because we calculate
the change rate for all the timestamps in the whole of
time series data. While extracting evolving timestamps
takes O(nT ) because we compare all the change rate of
timestamps to the thresholds. Thus, the time complexity
of second step is O(nT ).

3) The third step of MISCELA discovers spatially con-
nected sensor sets. The time complexity of this step
follows that of DBSCAN, and thus it takes O(n log n).

4) The fourth step of MISCELA is the CAP search. The
CAP search is executed for all tree nodes in the CAP
search tree. The number of tree nodes is h · d because
each tree node has at most d children nodes. For each
node, it checks if the sets of sensors have CAPs. It
takes O(2µ) because the number of combinations on
co-evaluations among µ attributes (Definition 6) is 2µ.
If the number of sensor sets in tree nodes is at most λ,
the number of the combinations is 2λ. Since the CAP
search is executed for all Gσ ∈ GS , the time complexity
is O(max(|GS |hd2λ, |GS |hd2µ)).

Finally, the total time complexity of MISCELA has been
calculated by adding all the steps, as O(nT + n log n +
max(|GS |hd2λ, |GS |hd2µ)). �

IV. EXPERIMENTS

In this section, we evaluate the efficiency and usefulness of
MISCELA. To the best of our knowledge, no existing methods
can directly apply the CAP mining when a given sensor set
contains multiple attributes. Hence, we compare MISCELA
with an SCP mining method Assembler [2] which is the state-
of-the-art algorithm for the SCP mining. Assembler discovers
SCPs which contains both necessary and unnecessary sensor
sets for the CAP mining. Then, we use it with a filter
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Fig. 4: The maximum number of CAP attributes µ

which outputs only necessary sensor sets (i.e. CAPs) over the
search process. Since the difference between MISCELA and
Assembler is their CAP search, we compare the response time
of the CAP search of MISCELA to that of Assembler with
varying the following parameters;

• The maximum number of CAP attributes µ
• The evolving rate ε
• The minimum support ψ

The algorithms of MISCELA and Assembler are imple-
mented in Python. The experiments are conducted on a
computer with Intel Xeron E5-2620 2.4GHz CPU and 32GB
memory.

A. Experimental Setup

Our experiments use three real sensor datasets; (1) five
attributes daily sensor data collected in Santander, Spain
from 2016/3/1 to 2016/9/30, (2) six attributes daily sensor
data collected in China from 2016/9/1 to 2018/8/31, and
(3) 13 attributes daily sensor data collected in China from
2016/9/1 to 2018/8/31. We obtained the Santander dataset from
FESTIVAL1 and the two China datasets from envicloud.cn2.
Table I shows the detail of them. We use η = 800m for the
Santander dataset and η = 200km for the China datasets. We
set these distance thresholds to divide sensors in each dataset
into around 20 connected components. For all the datasets, we
use ε = 50%, µ = 2, and ψ = 500 as default parameters.

B. Efficiency Test

In this section, we describe the results of efficiency ex-
periments. We show the response time of MISCELA and
Assembler varying three parameters µ, ε, and ψ, respectively.
Throughout all the experiments, MISCELA is always faster
than Assembler. Our experiments show that MISCELA re-
duces the response time by up to 79% compared to that of
Assembler.

1http://www.festival-project.eu/
2http://www.envicloud.cn/

TABLE I: The detail of datasets

Name # of Attribute # of
timestamps sensors

Santander 5136

Temperature 297
Light 181
Noise 32

Traffic volume 31
Humidity 10

China6 730

PM2.5 1573
PM10 1573
SO2 1573
NO2 1573
CO 1573
O3 1573

China13 730

PM2.5 370
PM10 370
SO2 370
NO2 370
CO 370
O3 370

Sunny-percent 370
Rainy-percent 370

Rain 370
Temperature 370
Air-pressure 370

Humidity 370
Wind speed 370

1) The Maximum Number of CAP Attributes µ: First, we
describe the experimental result varying the maximum number
of CAP attributes µ. We vary µ from 2 to the number of
attributes in each dataset (e.g. from 2 to 5 for the Santander
dataset). Figure 4 shows the result of the experiment. We
can see that MISCELA is faster than Assembler in all the
dataset with any µ. Moreover, the result of China13 dataset
indicates that MISCELA is more efficient with a small µ.
This is because MISCELA ignores more connected sub-graphs
which have no CAPs when we set a small µ, while Assembler
exploits the sub-graphs.

2) Evolving Rate ε: Next, we describe the experimental
result varying the evolving rate ε. We measure the response
time of both methods with ε = 30%, 40%, 50%, 60%, and
70%, respectively. Figure 5 shows that MISCELA is faster
than Assembler in all the datasets with any ε. The response
time increases as the evolving rate ε increases. The setting
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Fig. 5: Evolving rate ε
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Fig. 6: Minimum support ψ

TABLE II: # of CAP computations varying µ

µ 2 3 4 5
MISCELA 424,510 425,062 425,062 425,062
Assembler 814,376 814,376 814,376 814,376

TABLE III: # of CAP computation varying ε

ε 30 40 50 60 70
MISCELA 32,743 231,502 424,510 424,541 424,541
Assembler 230,405 577,430 814,376 814,473 814,473

of the large ε causes that the number of extracted evolving
timestamps is large.

3) Minimum Support ψ: Finally, we describe the exper-
imental result with varying the minimum support ψ. We
measure the response time of both methods with ψ =
400, 450, 500, 550, and 600, respectively. We show the result
of the experiment in Figure 6. It shows that MISCELA is
faster than Assembler in all the cases. In particular, MISCELA
reduces the response time 79% compared to that of Assembler
in China6 dataset with ψ = 400. We can see in the result that
the response time of CAP search increases with decreasing of
the minimum support. This is because the smaller minimum
support detects the more CAPs.

TABLE IV: # of CAP computation varying ψ

ψ 400 450 500 550 600
MISCELA 6,546,796 1,413,067 424,510 163,374 84,768
Assembler 8,091,031 2,306,391 814,376 334,775 166,001

C. Theoretical Analysis

We discuss the results from the viewpoint of the time
complexity of the CAP search. The time complexity of the
CAP search is O(max(|GS |hd2λ, |GS |hd2µ)). The expression
indicates that the computation cost of CAP search increases
as µ increases. Moreover, ε and ψ implicitly affect the
computation cost of the CAP search. When ε is large and/or
ψ is small, the height of CAP search tree h is large This is
because more CAPs are discovered with a larger number of
evolving timestamps and/or a smaller minimum support. Since
the computation cost of the CAP search becomes large with a
large h, a large ε or a small ψ cause a large response time of
CAP search.

We can see the correctness of the discussion in Tables II,
III, and IV. Tables II, III, and IV show that the number of
CAP computations for Santander dataset with varying µ, ε,
and ψ, respectively. The large number of CAP computation
indicates a large computation cost of CAP search. From these
results, we can directly understand the reason that MISCELA
is faster than Assembler. The response time of the CAP search
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(b) Correlation

Fig. 7: The CAP in Santander

increases in proportion to the number of CAP computations.
We here omit the results of the China datasets because they
have a similar tendency to those of the Santander dataset.

D. Examples of CAPs

We show a meaningful CAP in Santander. Figure 7 shows
locations of sensors and measurements of the sensors. The
CAP is represented as C+1,+2

a1,a2 , where a1 = temperature
and a2 = light, Ga1 = {s1, s2, s3, s4, s5, s6} and Ga2 =
{s7, s8, s9, s10, s11}. The light and temperature sensors are
spatially close and their measurements increase/decrease si-
multaneously. In the real world, the sensors are in a down-
town area within the city, and this pattern indicates that the
downtown gets a lot of sunshine during the day time and they
are not in the shade.

V. RELATED WORK

The CAP mining is one of the pattern mining tasks which
aim to extract similar and frequent patterns in the time series
data. We review two similar tasks; motif discovery and co-
evolving mining task.

Motif discovery in time series data extracts a pair of
subsequences whose distance is smaller than a given thresh-
old δ. The subsequence is called motif. Lin et al. [6] first
introduced the top-K motif discovery task that discovers the
K subsequences that have the largest numbers of matches
among time series data. Chiu et al. [7] developed an algorithm
that discovers approximate motifs in linear time. Mueen et
al. [8] proposed an algorithm that efficiently discovers exact
motifs with the linear ordering heuristic and the early aban-
doning strategy. Motif discovery in multi-dimensional time
series has also been studied. Tanaka et al. [9], [10] proposed
an algorithm that transforms multi-dimensional time series
data into a sequence of symbols using principal component
analysis. Minnen et al. [11] studied the problem of mining sub-
dimensional motifs that across only a subset of the dimension.
These techniques are not suitable for the CAP mining because
they do not consider the locations of sensors and the various
patterns of attributes.

Co-evolving mining task aims at discovering sets of sensors
whose measurements co-evolve frequently. Trasarti et al. [12]
studied the problem of discovering regions which show a
similar deviation of population density by using mobile phone
data. Their method extracts vertical changes by calculating the
same hour of different days. In contrast, CAP search extracts
horizontal frequent changes in different sensors. Matsubara et
al. [13] proposed a spatially co-evolving framework FUNNEL
to discover both the county-level and the state-level properties
of different diseases. However, it is designed specifically for
epidemic data instead of general urban sensor data. Zhang et
al. [2] proposed a problem called the SCP mining, which aims
to discover sensors which are spatially close each other and
frequently co-evolving in their measurements. They proposed
an efficient algorithm called Assembler which is the state-of-
the-art of the SCP mining. Although Assembler can discover
CAPs, there is large redundancy in their processing because
they extract unnecessary correlated sensors that do not have
CAPs. Here, to define the correlation among time series sensor
data, they adopted the co-evolution instead of the standard
Pearson correlation. The Pearson correlation is only for two
variables while the co-evolution can be used for multiple
variables. Since the SCP mining aims to find the correlated
patterns among multiple sensors, the co-evolution is more
suitable compared to the Pearson correlation. The CAP mining
also targets multiple variables, we also adopt the co-evolution
to define the correlation. Cheng et al. [3] studied discovering
dynamic co-evolving zones in time series data. They proposed
the divide-and-conquer strategy to discover the relationship
between the co-evolving zones of the different time period.
Hassani et al. [14] proposed a method for constructing physical
clusters of sensor nodes based on both spatial and mea-
surement similarities to make groups which record similar
measurement over a time period. These algorithms do not
target the CAP mining. We show that MISCELA is more
efficient than Assember which is the state-of-the-art for the
SCP mining.



VI. CONCLUSION

In this paper, we introduced the problem called correlated
attribute pattern (CAP) mining, which discovers the correlation
among attributes in multi-attributes sensor set. We proposed
the efficient method, MISCELA, for the CAP mining. MIS-
CELA effectively prunes the unnecessary computations for
the CAP mining. We conducted the experiments using three
real sensor datasets. MISCELA can efficiently discover CAPs
in multi-attribute sensor sets compared to the SCP mining
method. The results of our experiments showed that the CAP
mining obtains several meaningful patterns.

In our future work, we attempt to discover regional features
among the attributes in a certain area. Additionally, it is
interesting to discover outliers in areas characterized by CAPs.
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